Bibliography

[1]   Andrew Waterhouse, Martino Bertoni, Stefan Bienert, Gabriel Studer, Gerardo Tauriello, Rafal Gumienny, Florian T Heer, Tjaart A P de Beer, Christine Rempfer, Lorenza Bordoli, Rosalba Lepore, and Torsten Schwede. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1):W296–W303, July 2018.

[2]   Jasmine Cubuk, Jhullian J. Alston, J. Jeremías Incicco, Sukrit Singh, Melissa D. Stuchell-Brereton, Michael D. Ward, Maxwell I. Zimmerman, Neha Vithani, Daniel Griffith, Jason A. Wagoner, Gregory R. Bowman, Kathleen B. Hall, Andrea Soranno, and Alex S. Holehouse. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. preprint, Biophysics, June 2020.

[3]   Zhaoming Su, Chao Wu, Liuqing Shi, Priya Luthra, Grigore D. Pintilie, Britney Johnson, Justin R. Porter, Peng Ge, Muyuan Chen, Gai Liu, Thomas E. Frederick, Jennifer M. Binning, Gregory R. Bowman, Z. Hong Zhou, Christopher F. Basler, Michael L. Gross, Daisy W. Leung, Wah Chiu, and Gaya K. Amarasinghe. Electron cryo-microscopy structure of ebola virus nucleoprotein reveals a mechanism for nucleocapsid-like assembly. Cell, 172(5):966–978.e12, February 2018.

[4]   Bryan L Roth, John J Irwin, and Brian K Shoichet. Discovery of new GPCR ligands to illuminate new biology. Nature chemical biology, 13(11):1143–1151, November 2017.

[5]   Brian D. Weitzner, Yakov Kipnis, A. Gerard Daniel, Donald Hilvert, and David Baker. A computational method for design of connected catalytic networks in proteins. Protein Science, 28(12):2036–2041, December 2019.

[6]   J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature, 181(4610):662–666, March 1958.

[7]   Sofia Khan and Mauno Vihinen. Performance of protein stability predictors. Human Mutation, 31(6):675–684, March 2010.

[8]   Jian Yin, Niel M. Henriksen, David R. Slochower, Michael R. Shirts, Michael W. Chiu, David L. Mobley, and Michael K. Gilson. Overview of the SAMPL5 host–guest challenge: Are we doing better? Journal of Computer-Aided Molecular Design, 31(1):1–19, January 2017.

[9]   Kathryn M Hart, Chris M W Ho, Supratik Dutta, Michael L Gross, and Gregory R Bowman. Modelling proteins’ hidden conformations to predict antibiotic resistance. Nature communications, 7:12965, October 2016.

[10]   Justin R Porter, Artur Meller, Maxwell I Zimmerman, Michael J Greenberg, and Gregory R Bowman. Conformational distributions of isolated myosin motor domains encode their mechanochemical properties. eLife, 9:e55132, May 2020.

[11]   C Levinthal. How to Fold Graciously. Topics in mossbauer spectroscopy, 20(1):25–44, October 1969.

[12]   Robert L. Baldwin. Early days of protein hydrogen exchange: 1954-1972. Proteins: Structure, Function, and Bioinformatics, 79(7):2021–2026, July 2011.

[13]   Katherine A Henzler-Wildman, Ming Lei, Vu Thai, S Jordan Kerns, Martin Karplus, and Dorothee Kern. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature, 450(7171):913–916, December 2007.

[14]   David D Boehr, Dan McElheny, H Jane Dyson, and P E Wright. The dynamic energy landscape of dihydrofolate reductase catalysis. Science, 313(5793):1638–1642, September 2006.

[15]   David D Boehr, Ruth Nussinov, and P E Wright. The role of dynamic conformational ensembles in biomolecular recognition. Nature chemical biology, 5(11):789–796, November 2009.

[16]   Adelajda Zorba, Vanessa Buosi, Steffen Kutter, Nadja Kern, Francesco Pontiggia, Young-Jin Cho, and Dorothee Kern. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife, 3:e02667, May 2014.

[17]   S Jordan Kerns, Roman V Agafonov, Young-Jin Cho, Francesco Pontiggia, Renee Otten, Dimitar V Pachov, Steffen Kutter, Lien A Phung, Padraig N Murphy, Vu Thai, Tom Alber, Michael F Hagan, and Dorothee Kern. The energy landscape of adenylate kinase during catalysis. Nature Structural & Molecular Biology, 22(2):124–131, February 2015.

[18]   Ned Van Eps, Lori L Anderson, Oleg G Kisselev, Thomas J Baranski, Wayne L Hubbell, and Garland R Marshall. Electron paramagnetic resonance studies of functionally active, nitroxide spin-labeled peptide analogues of the C-terminus of a G-protein alpha subunit. Biochemistry, 49(32):6877–6886, August 2010.

[19]   A Joshua Wand. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. 23(1):75–81, February 2013.

[20]   Antoine Koehl, Hongli Hu, Shoji Maeda, Yan Zhang, Qianhui Qu, Joseph M Paggi, Naomi R Latorraca, Daniel Hilger, Roger Dawson, Hugues Matile, Gebhard F X Schertler, Sébastien Granier, William I Weis, Ron O Dror, Aashish Manglik, Georgios Skiniotis, and Brian K Kobilka. Structure of the µ-opioid receptor–G i protein complex. Nature, 383:1, June 2018.

[21]   Christopher J Draper-Joyce, Maryam Khoshouei, David M Thal, Yi-Lynn Liang, Anh T N Nguyen, Sebastian G B Furness, Hariprasad Venugopal, Jo-Anne Baltos, Jürgen M Plitzko, Radostin Danev, Wolfgang Baumeister, Lauren T May, Denise Wootten, Patrick M Sexton, Alisa Glukhova, and Arthur Christopoulos. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature, 63:1, June 2018.

[22]   Javier García-Nafría, Rony Nehmé, Patricia C Edwards, and Christopher G Tate. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature, 7:118, June 2018.

[23]   Yanyong Kang, Oleg Kuybeda, Parker W de Waal, Somnath Mukherjee, Ned Van Eps, Przemyslaw Dutka, X Edward Zhou, Alberto Bartesaghi, Satchal Erramilli, Takefumi Morizumi, Xin Gu, Yanting Yin, Ping Liu, Yi Jiang, Xing Meng, Gongpu Zhao, Karsten Melcher, Oliver P Ernst, Anthony A Kossiakoff, Sriram Subramaniam, and H Eric Xu. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature, 63(Suppl. 1):1256, June 2018.

[24]   Ron O Dror, Robert M Dirks, J P Grossman, Huafeng Xu, and David E Shaw. Biomolecular Simulation: A Computational Microscope for Molecular Biology. dx.doi.org, 41(1):429–452, May 2012.

[25]   Eric H. Lee, Jen Hsin, Marcos Sotomayor, Gemma Comellas, and Klaus Schulten. Discovery through the computational microscope. Structure, 17(10):1295–1306, October 2009.

[26]   Pedro E. M. Lopes, Olgun Guvench, and Alexander D. MacKerell. Current status of protein force fields for molecular dynamics simulations. In Andreas Kukol, editor, Molecular Modeling of Proteins, volume 1215, pages 47–71. Springer New York, New York, NY, 2015.

[27]   Weinan E and Eric Vanden-Eijnden. Transition-Path Theory and Path-Finding Algorithms for the Study of Rare Events. dx.doi.org, 61(1):391–420, March 2010.

[28]   Donald Hamelberg, John Mongan, and J. Andrew McCammon. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. The Journal of Chemical Physics, 120(24):11919–11929, June 2004.

[29]   Dietmar Paschek, Hugh Nymeyer, and Angel E. García. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: On the structure and possible role of internal water. Journal of Structural Biology, 157(3):524–533, March 2007.

[30]   Stefano Piana and Alessandro Laio. A bias-exchange approach to protein folding. The Journal of Physical Chemistry B, 111(17):4553–4559, May 2007.

[31]   John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry, 28(16):2618–2640, December 2007.

[32]   Mark S. Friedrichs, Peter Eastman, Vishal Vaidyanathan, Mike Houston, Scott Legrand, Adam L. Beberg, Daniel L. Ensign, Christopher M. Bruns, and Vijay S. Pande. Accelerating molecular dynamic simulation on graphics processing units. Journal of Computational Chemistry, 30(6):864–872, April 2009.

[33]   Peter Eastman and Vijay Pande. Openmm: a hardware-independent framework for molecular simulations. Computing in Science & Engineering, 12(4):34–39, July 2010.

[34]   Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7):e1005659, July 2017.

[35]   Maxwell I. Zimmerman and Gregory R. Bowman. Fast conformational searches by balancing exploration/exploitation trade-offs. Journal of Chemical Theory and Computation, 11(12):5747–5757, December 2015.

[36]   David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo, J. P. Grossman, C. Richard Ho, Douglas J. Ierardi, István Kolossváry, John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian Towles, and Stanley C. Wang. Anton, a special-purpose machine for molecular dynamics simulation. Communications of the ACM, 51(7):91–97, July 2008.

[37]   M Shirts and V S Pande. COMPUTING: Screen Savers of the World Unite! Science, 290(5498):1903–1904, December 2000.

[38]   Brooke E Husic and Vijay S Pande. Markov State Models: From an Art to a Science. Journal of the American Chemical Society, page jacs.7b12191, January 2018.

[39]   J. R. Porter, M. I. Zimmerman, and G. R. Bowman. Enspara: Modeling molecular ensembles with scalable data structures and parallel computing. The Journal of Chemical Physics, 150(4):044108, 2019.

[40]   John D Chodera and Frank Noé. Markov state models of biomolecular conformational dynamics. Current opinion in structural biology, 25:135–144, April 2014.

[41]   Catherine R Knoverek, Gaya K Amarasinghe, and Gregory R Bowman. Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Trends in biochemical sciences, December 2018.

[42]   Maxwell I Zimmerman, Justin R Porter, Xianqiang Sun, Roseane R Silva, and Gregory R Bowman. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. Journal of Chemical Theory and Computation, q-bio.BM:acs.jctc.8b00500, October 2018.

[43]   L Molgedey and HG Schuster. Separation of a mixture of independent signals using time delayed correlations. Physical review letters, 72(23):3634–3637, June 1994.

[44]   Mohammad M Sultan and Vijay S Pande. tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. Journal of Chemical Theory and Computation, 13(6):2440–2447, June 2017.

[45]   Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and Frank Noé. Identification of slow molecular order parameters for Markov model construction. arXiv.org, (1):015102, February 2013.

[46]   Vincent A Voelz, Gregory R Bowman, Kyle Beauchamp, and Vijay S Pande. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). Journal of the American Chemical Society, 132(5):1526–1528, February 2010.

[47]   Gregory R Bowman and Phillip L Geissler. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proceedings of the National Academy of Sciences, 109(29):11681–11686, July 2012.

[48]   Xianqiang Sun, Sukrit Singh, Kendall Blumer, and Gregory R Bowman. Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. eLife, 7, October 2018.

[49]   Justin R Porter, Katelyn E Moeder, Carrie A Sibbald, Maxwell I Zimmerman, Kathryn M Hart, Michael J Greenberg, and Gregory R Bowman. Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and Allosteric Coupling. Biophysical Journal, 116(5):818–830, March 2019.

[50]   Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293–306, 1985.

[51]   Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for K-medoids clustering. Expert Systems with Applications, 36(2):3336–3341, March 2009.

[52]   Jan-Hendrik Prinz, John D. Chodera, Vijay S. Pande, William C. Swope, Jeremy C. Smith, and Frank Noé. Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. The Journal of Chemical Physics, 134(24):244108, June 2011.

[53]   Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Martin Held, John D. Chodera, Christof Schütte, and Frank Noé. Markov models of molecular kinetics: Generation and validation. The Journal of Chemical Physics, 134(17):174105, May 2011.

[54]   Matthew A. Cruz, Thomas E. Frederick, Sukrit Singh, Neha Vithani, Maxwell I. Zimmerman, Justin R. Porter, Katelyn E. Moeder, Gaya K. Amarasinghe, and Gregory R. Bowman. Discovery of a cryptic allosteric site in ebola’s ‘undruggable’ vp35 protein using simulations and experiments. bioRxiv, 2020.

[55]   Gregory R Bowman, Vincent A Voelz, and Vijay S Pande. Taming the complexity of protein folding. 21(1):4–11, February 2011.

[56]   Gregory R Bowman. Accurately modeling nanosecond protein dynamics requires at least microseconds of simulation. Journal of computational chemistry, pages n/a–n/a, June 2015.

[57]   Gregory R Bowman and Phillip L Geissler. Extensive conformational heterogeneity within protein cores. The Journal of Physical Chemistry B, 118(24):6417–6423, 2014.

[58]   Yunhui Ge, Elias Borne, Shannon Stewart, Michael R. Hansen, Emilia C. Arturo, Eileen K. Jaffe, and Vincent A. Voelz. Simulations of the regulatory ACT domain of human phenylalanine hydroxylase (Pah) unveil its mechanism of phenylalanine binding. Journal of Biological Chemistry, 293(51):19532–19543, December 2018.

[59]   Shi Chen, Rafal P Wiewiora, Fanwang Meng, Nicolas Babault, Anqi Ma, Wenyu Yu, Kun Qian, Hao Hu, Hua Zou, Junyi Wang, Shijie Fan, Gil Blum, Fabio Pittella-Silva, Kyle A Beauchamp, Wolfram Tempel, Hualiang Jiang, Kaixian Chen, Robert J Skene, Yujun George Zheng, Peter J Brown, Jian Jin, Cheng Luo, John D Chodera, and Minkui Luo. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife, 8:e45403, May 2019.

[60]   Roberta Pascolutti, Xianqiang Sun, Joseph Kao, Roy L. Maute, Aaron M. Ring, Gregory R. Bowman, and Andrew C. Kruse. Structure and dynamics of pd-l1 and an ultra-high-affinity pd-1 receptor mutant. Structure, 24(10):1719–1728, October 2016.

[61]   V. J. Hilser. An ensemble view of allostery. Science, 327(5966):653–654, February 2010.

[62]   M F Perutz. Stereochemistry of cooperative effects in haemoglobin. Nature, 228(5273):726–739, November 1970.

[63]   Shiou-Ru Tzeng and Charalampos G Kalodimos. Dynamic activation of an allosteric regulatory protein. Nature, 462(7271):368–372, November 2009.

[64]   Shiou-Ru Tzeng and Charalampos G Kalodimos. Protein dynamics and allostery: an NMR view. 21(1):62–67, February 2011.

[65]   William I Weis and Brian K Kobilka. The Molecular Basis of G Protein–Coupled Receptor Activation. Annual review of biochemistry, 87(1):897–919, June 2018.

[66]   Daniel Wacker, Raymond C. Stevens, and Bryan L. Roth. How ligands illuminate gpcr molecular pharmacology. Cell, 170(3):414–427, July 2017.

[67]   Kadla R Rosholm, Natascha Leijnse, Anna Mantsiou, Vadym Tkach, Sřren L Pedersen, Volker F Wirth, Lene B Oddershede, Knud J Jensen, Karen L Martinez, Nikos S Hatzakis, Poul Martin Bendix, Andrew Callan-Jones, and Dimitrios Stamou. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nature Chemical Biology, 13(7):724–729, July 2017.

[68]   Sřren G F Rasmussen, Brian T DeVree, Yaozhong Zou, Andrew C Kruse, Ka Young Chung, Tong Sun Kobilka, Foon Sun Thian, Pil Seok Chae, Els Pardon, Diane Calinski, Jesper M Mathiesen, Syed T A Shah, Joseph A Lyons, Martin Caffrey, Samuel H Gellman, Jan Steyaert, Georgios Skiniotis, William I Weis, Roger K Sunahara, and Brian K Kobilka. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477(7366):549–555, July 2011.

[69]   K Gunasekaran, Buyong Ma, and Ruth Nussinov. Is allostery an intrinsic property of all dynamic proteins? Proteins, 57(3):433–443, November 2004.

[70]   Philip A. Romero and Frances H. Arnold. Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology, 10(12):866–876, December 2009.

[71]   Merijn L M Salverda, J Arjan G M De Visser, and Miriam Barlow. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS microbiology reviews, 34(6):1015–1036, November 2010.

[72]   Michelle R. Arkin and James A. Wells. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Reviews Drug Discovery, 3(4):301–317, April 2004.

[73]   Anthony Ivetac and J. Andrew McCammon. Mapping the druggable allosteric space of g-protein coupled receptors: a fragment-based molecular dynamics approach: computational mapping of novel druggable sites on gpcrs. Chemical Biology & Drug Design, pages no–no, July 2010.

[74]   Jeanne A Hardy and James A Wells. Searching for new allosteric sites in enzymes. Current Opinion in Structural Biology, 14(6):706–715, December 2004.

[75]   James R Horn and Brian K Shoichet. Allosteric Inhibition Through Core Disruption. Journal of Molecular Biology, 336(5):1283–1291, March 2004.

[76]   M. R. Arkin, M. Randal, W. L. DeLano, J. Hyde, T. N. Luong, J. D. Oslob, D. R. Raphael, L. Taylor, J. Wang, R. S. McDowell, J. A. Wells, and A. C. Braisted. Binding of small molecules to an adaptive protein-protein interface. Proceedings of the National Academy of Sciences, 100(4):1603–1608, February 2003.

[77]   Jonathan M. Ostrem, Ulf Peters, Martin L. Sos, James A. Wells, and Kevan M. Shokat. K-Ras(G12c) inhibitors allosterically control GTP affinity and effector interactions. Nature, 503(7477):548–551, November 2013.

[78]   Sandor Vajda, Dmitri Beglov, Amanda E Wakefield, Megan Egbert, and Adrian Whitty. Cryptic binding sites on proteins: definition, detection, and druggability. Current opinion in chemical biology, 44:1–8, May 2018.

[79]   Julie R. Schames, Richard H. Henchman, Jay S. Siegel, Christoph A. Sotriffer, Haihong Ni, and J. Andrew McCammon. Discovery of a novel binding trench in hiv integrase. Journal of Medicinal Chemistry, 47(8):1879–1881, April 2004.

[80]   Patrick A. Frantom, Hui-Min Zhang, Mark R. Emmett, Alan G. Marshall, and John S. Blanchard. Mapping of the allosteric network in the regulation of -isopropylmalate synthase from mycobacterium tuberculosis by the feedback inhibitor <span style=”font-variant:small-caps;”>l</span> -leucine: solution-phase h/d exchange monitored by ft-icr mass spectrometry. Biochemistry, 48(31):7457–7464, August 2009.

[81]   Gregory Manley and J. Patrick Loria. NMR insights into protein allostery. Archives of Biochemistry and Biophysics, 519(2):223–231, March 2012.

[82]   S W Lockless and R Ranganathan. Evolutionarily conserved pathways of energetic connectivity in protein families. Science, 286(5438):295–299, October 1999.

[83]   Victoria A Feher, Jacob D Durrant, Adam T Van Wart, and Rommie E Amaro. Computational approaches to mapping allosteric pathways. 25:98–103, April 2014.

[84]   Joe G Greener and Michael Je Sternberg. Structure-based prediction of protein allostery. 50:1–8, October 2017.

[85]   Toshiko Ichiye and Martin Karplus. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 11(3):205–217, November 1991.

[86]   Christopher L McClendon, Gregory Friedland, David L Mobley, Homeira Amirkhani, and Matthew P Jacobson. Quantifying Correlations Between Allosteric Sites in Thermodynamic Ensembles. Journal of Chemical Theory and Computation, 5(9):2486–2502, September 2009.

[87]   A Cooper and D T Dryden. Allostery without conformational change. A plausible model. European biophysics journal : EBJ, 11(2):103–109, 1984.

[88]   Nataliya Popovych, Shangjin Sun, Richard H Ebright, and Charalampos G Kalodimos. Dynamically driven protein allostery. Nature Structural & Molecular Biology, 13(9):831–838, September 2006.

[89]   Milo M Lin. Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery. Journal of the American Chemical Society, page jacs.5b08814, April 2016.

[90]   Sukrit Singh and Gregory R Bowman. Quantifying allosteric communication via both concerted structural changes and conformational disorder with CARDS. Journal of Chemical Theory and Computation, page acs.jctc.6b01181, March 2017.

[91]   Daniel M Rosenbaum, Sřren G F Rasmussen, and Brian K Kobilka. The structure and function of G-protein-coupled receptors. Nature, 459(7245):356–363, May 2009.

[92]   Brian K Shoichet and Brian K Kobilka. Structure-based drug screening for G-protein-coupled receptors. Trends in pharmacological sciences, 33(5):268–272, May 2012.

[93]   Jingjing Guo and Huan-Xiang Zhou. Protein Allostery and Conformational Dynamics. Chemical Reviews, 116(11):6503–6515, February 2016.

[94]   D E Koshland. Enzyme flexibility and enzyme action. Journal of Cellular Physiology, 54(S1):245–258, December 1959.

[95]   D E Koshland Jr, G Nemethy, and D Filmer. Comparison of Experimental Binding Data and Theoretical Models in Proteins Containing Subunits *. Biochemistry, 5(1):365–385, January 1966.

[96]   Jacque Monod, Jeffries Wyman, and Jean-Pierre Changeux. On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12(1):88–118, May 1965.

[97]   Jean-Pierre Changeux and Stuart Edelstein. Conformational selection or induced fit? 50 years of debate resolved. F1000 biology reports, 3(19):19, 2011.

[98]   Peter Csermely, Robin Palotai, and Ruth Nussinov. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in biochemical sciences, 35(10):539–546, October 2010.

[99]   Daniel-Adriano Silva, Gregory R Bowman, Alejandro Sosa-Peinado, and Xuhui Huang. A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLoS Computational Biology, 7(5):e1002054, May 2011.

[100]   Gordon G Hammes, Yu-Chu Chang, and Terrence G Oas. Conformational selection or induced fit: a flux description of reaction mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106(33):13737–13741, August 2009.

[101]   Jennifer L Radkiewicz and and III Charles L Brooks. Protein Dynamics in Enzymatic Catalysis: Exploration of Dihydrofolate Reductase. Journal of the American Chemical Society, 122(2):225–231, December 1999.

[102]   Pratul K Agarwal, Salomon R Billeter, , and Sharon Hammes-Schiffer. Nuclear Quantum Effects and Enzyme Dynamics in Dihydrofolate Reductase Catalysis, volume 106. American Chemical Society, February 2002.

[103]   Pratul K Agarwal, Salomon R Billeter, P T Ravi Rajagopalan, Stephen J Benkovic, and Sharon Hammes-Schiffer. Network of coupled promoting motions in enzyme catalysis. Proceedings of the National Academy of Sciences, 99(5):2794–2799, March 2002.

[104]   Thomas H Rod, Jennifer L Radkiewicz, and Charles L Brooks III. Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proceedings of the National Academy of Sciences, 100(12):6980–6985, June 2003.

[105]   Oliver F Lange and Helmut Grubmüller. Generalized correlation for biomolecular dynamics. Proteins, 62(4):1053–1061, March 2006.

[106]   Matthew J Whitley and Andrew L Lee. Frameworks for understanding long-range intra-protein communication. Current protein & peptide science, 10(2):116–127, April 2009.

[107]   Patrick Weinkam, Jaume Pons, and Andrej Sali. Structure-based model of allostery predicts coupling between distant sites. Proceedings of the National Academy of Sciences of the United States of America, 109(13):4875–4880, March 2012.

[108]   Tom Lenaerts, Jesper Ferkinghoff-Borg, Francois Stricher, Luis Serrano, Joost W H Schymkowitz, and Frederic Rousseau. Quantifying information transfer by protein domains: analysis of the Fyn SH2 domain structure. BMC structural biology, 8(1):43, 2008.

[109]   Kateri H Dubay, Jacques P Bothma, and Phillip L Geissler. Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. PLoS Computational Biology, 7(9):e1002168, September 2011.

[110]   R Bryn Fenwick, Laura Orellana, Santi Esteban-Martín, Modesto Orozco, and Xavier Salvatella. Correlated motions are a fundamental property of β-sheets. Nature communications, 5:4070, June 2014.

[111]   Qiang Cui and Martin Karplus. Allostery and cooperativity revisited. Protein Science, 17(8):1295–1307, August 2008.

[112]   Ron Elber. Simulations of allosteric transitions. 21(2):167–172, April 2011.

[113]   Adam T Van Wart, Jacob Durrant, Lane Votapka, and Rommie E Amaro. Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis. Journal of Chemical Theory and Computation, 10(2):511–517, February 2014.

[114]   Robert D Malmstrom, Alexandr P Kornev, Susan S Taylor, and Rommie E Amaro. Allostery through the computational microscope: cAMP activation of a canonical signalling domain. Nature communications, 6:7588, July 2015.

[115]   Jhih-Wei Chu and Gregory A Voth. Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proceedings of the National Academy of Sciences, 102(37):13111–13116, September 2005.

[116]   Krishna Pratap Ravindranathan, Emilio Gallicchio, and Ronald M Levy. Conformational equilibria and free energy profiles for the allosteric transition of the ribose-binding protein. Journal of Molecular Biology, 353(1):196–210, October 2005.

[117]   Patrick Weinkam, Yao Chi Chen, Jaume Pons, and Andrej Sali. Impact of mutations on the allosteric conformational equilibrium. Journal of Molecular Biology, 425(3):647–661, February 2013.

[118]   Ying Liu and Ivet Bahar. Sequence evolution correlates with structural dynamics. Molecular biology and evolution, 29(9):2253–2263, September 2012.

[119]   Liqun Zhang, Sabine Bouguet-Bonnet, and Matthias Buck. Combining NMR and Molecular Dynamics Studies for Insights into the Allostery of Small GTPase–Protein Interactions, pages 235–259. Springer New York, New York, NY, 2012.

[120]   Dorothee Kern and Erik RP Zuiderweg. The role of dynamics in allosteric regulation. 13(6):748–757, December 2003.

[121]   Vincent J Hilser and E Brad Thompson. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proceedings of the National Academy of Sciences, 104(20):8311–8315, May 2007.

[122]   Virginia M Burger, Diego O Nolasco, and Collin M Stultz. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. Journal of Biological Chemistry, 291(13):6706–6713, March 2016.

[123]   Turkan Haliloglu and Ivet Bahar. Adaptability of protein structures to enable functional interactions and evolutionary implications. 35:17–23, December 2015.

[124]   Katherine Henzler-Wildman and Dorothee Kern. Dynamic personalities of proteins. Nature, 450(7172):964–972, December 2007.

[125]   Vincent J Hilser, James O Wrabl, and Hesam N Motlagh. Structural and energetic basis of allostery. Annual review of biophysics, 41(1):585–609, 2012.

[126]   Ursula Jakob, Richard Kriwacki, and Vladimir N Uversky. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chemical Reviews, 114(13):6779–6805, July 2014.

[127]   James G Harman. Allosteric regulation of the cAMP receptor protein. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1547(1):1–17, May 2001.

[128]   T Heyduk and J C Lee. Escherichia coli cAMP receptor protein: evidence for three protein conformational states with different promoter binding affinities. Biochemistry, 28(17):6914–6924, August 1989.

[129]   S C Schultz, G C Shields, and T A Steitz. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science, 253(5023):1001–1007, August 1991.

[130]   Seung-Hyeon Seok, Hookang Im, Hyung-Sik Won, Min-Duk Seo, Yoo-Sup Lee, Hye-Jin Yoon, Min-Jeong Cha, Jin-Young Park, and Bong-Jin Lee. Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. Acta crystallographica. Section D, Biological crystallography, 70(Pt 6):1726–1742, June 2014.

[131]   Nataliya Popovych, Shiou-Ru Tzeng, Marco Tonelli, Richard H Ebright, and Charalampos G Kalodimos. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106(17):6927–6932, April 2009.

[132]   Shiou-Ru Tzeng and Charalampos G Kalodimos. Protein activity regulation by conformational entropy. Nature, 488(7410):236–240, August 2012.

[133]   V J Hilser, D Dowdy, T G Oas, and E Freire. The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proceedings of the National Academy of Sciences, 95(17):9903–9908, August 1998.

[134]   V J Hilser and E Freire. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. Journal of Molecular Biology, 262(5):756–772, October 1996.

[135]   Enrique Marcos, Ramon Crehuet, and Ivet Bahar. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members. PLoS Computational Biology, 7(9):e1002201, September 2011.

[136]   Gürol M Süel, Steve W Lockless, Mark A Wall, and Rama Ranganathan. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nature structural biology, 10(1):59–69, January 2003.

[137]   M D Ediger. Spatially heterogeneous dynamics in supercooled liquids. Annual review of physical chemistry, 51(1):99–128, 2000.

[138]   Sharon C Glotzer. Spatially heterogeneous dynamics in liquids: insights from simulation. Journal of Non-Crystalline Solids, 274(1-3):342–355, September 2000.

[139]   Ranko Richert. Heterogeneous dynamics in liquids: fluctuations in space and time. Journal of Physics: Condensed Matter, 14(23):R703–R738, June 2002.

[140]   Mauro Merolle, Juan P Garrahan, and David Chandler. Space-time thermodynamics of the glass transition. Proceedings of the National Academy of Sciences, 102(31):10837–10840, August 2005.

[141]   Lester O Hedges, Lutz Maibaum, David Chandler, and Juan P Garrahan. Decoupling of exchange and persistence times in atomistic models of glass formers. 127(21):211101, December 2007.

[142]   Aaron S Keys, Lester O Hedges, Juan P Garrahan, Sharon C Glotzer, and David Chandler. Excitations Are Localized and Relaxation Is Hierarchical in Glass-Forming Liquids. Physical Review X, 1(2):021013, November 2011.

[143]   William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and Michael L Klein. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):926–935, July 1983.

[144]   W L DeLano. The PyMOL Molecular Graphics System, Ver. 1.3. Schrödinger, 2010.

[145]   David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and Herman J C Berendsen. GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16):1701–1718, December 2005.

[146]   Yong Duan, Chun Wu, Shibasish Chowdhury, Mathew C Lee, Guoming Xiong, Wei Zhang, Rong Yang, Piotr Cieplak, Ray Luo, Taisung Lee, James Caldwell, Junmei Wang, and Peter Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of computational chemistry, 24(16):1999–2012, December 2003.

[147]   Gregory R Bowman, Eric R Bolin, Kathryn M Hart, Brendan C Maguire, and Susan Marqusee. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proceedings of the National Academy of Sciences of the United States of America, 112(9):2734–2739, March 2015.

[148]   Robert T McGibbon, Kyle A Beauchamp, Matthew P Harrigan, Christoph Klein, Jason M Swails, Carlos X Hernández, Christian R Schwantes, Lee-Ping Wang, Thomas J Lane, and Vijay S Pande. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal, 109(8):1528–1532, October 2015.

[149]   Gerhard Hummer. From transition paths to transition states and rate coefficients. The Journal of Chemical Physics, 120(2):516–523, January 2004.

[150]   Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annual review of physical chemistry, 53(1):291–318, 2002.

[151]   Nicolae-Viorel Buchete and Gerhard Hummer. Coarse master equations for peptide folding dynamics. The Journal of Physical Chemistry B, 112(19):6057–6069, May 2008.

[152]   Christof Schütte, Frank Noé, Jianfeng Lu, Marco Sarich, and Eric Vanden-Eijnden. Markov state models based on milestoning. The Journal of Chemical Physics, 134(20):204105, May 2011.

[153]   YounJoon Jung, Juan P Garrahan, and David Chandler. Dynamical exchanges in facilitated models of supercooled liquids. 123(8):084509, August 2005.

[154]   Robert E Kass and Adrian E Raftery. Bayes Factors. Journal of the American Statistical Association, February 2012.

[155]   Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and techniques with java implementations. Acm Sigmod Record, 31(1):76–77, 2002.

[156]   James S Fraser, Henry van den Bedem, Avi J Samelson, P Therese Lang, James M Holton, Nathaniel Echols, and Tom Alber. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108(39):16247–16252, September 2011.

[157]   Jiayin Dai, Shwu-Hwa Lin, Carly Kemmis, Anita J Chin, and J Ching Lee. Interplay between site-specific mutations and cyclic nucleotides in modulating DNA recognition by Escherichia coli cyclic AMP receptor protein. Biochemistry, 43(28):8901–8910, July 2004.

[158]   H Aiba, T Nakamura, H Mitani, and H Mori. Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. The EMBO Journal, 4(12):3329–3332, December 1985.

[159]   M Kurplus and J A McCammon. Dynamics of proteins: elements and function. Annual review of biochemistry, 1983.

[160]   Charles L Brooks, Martin Karplus, and B Montgomery Pettitt. Advances in chemical physics, volume 71: Proteins: A theoretical perspective of dynamics, structure, and thermodynamics. Wiley-Blackwell, 2006.

[161]   Mark A Depristo, Paul I W de Bakker, and Tom L Blundell. Heterogeneity and Inaccuracy in Protein Structures Solved by X-Ray Crystallography. Structure, 12(5):831–838, May 2004.

[162]   A J Wand, J L Urbauer, R P McEvoy, and R J Bieber. Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry, 35(19):6116–6125, May 1996.

[163]   Kresten Lindorff-Larsen, Robert B Best, Mark A Depristo, Christopher M Dobson, and Michele Vendruscolo. Simultaneous determination of protein structure and dynamics. Nature, 433(7022):128–132, January 2005.

[164]   Tatyana I Igumenova, Kendra King Frederick, and A Joshua Wand. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chemical Reviews, 106(5):1672–1699, May 2006.

[165]   Kateri H Dubay and Phillip L Geissler. Calculation of proteins’ total side-chain torsional entropy and its influence on protein-ligand interactions. Journal of Molecular Biology, 391(2):484–497, August 2009.

[166]   S. Chaudhury, S. Lyskov, and J. J. Gray. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 26(5):689–691, March 2010.

[167]   Maxim V. Shapovalov and Roland L. Dunbrack. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure, 19(6):844–858, June 2011.

[168]   W M Oldham and H E Hamm. Structural basis of function in heterotrimeric G proteins. Quarterly reviews of biophysics, 2006.

[169]   William M Oldham and Heidi E Hamm. Heterotrimeric G protein activation by G-protein-coupled receptors. Nature reviews. Molecular cell biology, 9(1):60–71, January 2008.

[170]   Christopher A Johnston and David P Siderovski. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Molecular pharmacology, 72(2):219–230, August 2007.

[171]   Tilman Flock, Charles N J Ravarani, Dawei Sun, A J Venkatakrishnan, Melis Kayikci, Christopher G Tate, Dmitry B Veprintsev, and M Madan Babu. Universal allosteric mechanism for G[alpha] activation by GPCRs. Nature, 524(7564):173–179, August 2015.

[172]   R K Sunahara, J J Tesmer, A G Gilman, and S R Sprang. Crystal structure of the adenylyl cyclase activator Gsalpha. Science, 278(5345):1943–1947, December 1997.

[173]   Detlef D Leipe, Yuri I Wolf, Eugene V Koonin, and L Aravind. Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 317(1):41–72, March 2002.

[174]   Gerwin H Westfield, Sřren G F Rasmussen, Min Su, Somnath Dutta, Brian T DeVree, Ka Young Chung, Diane Calinski, Gisselle Velez-Ruiz, Austin N Oleskie, Els Pardon, Pil Seok Chae, Tong Liu, Sheng Li, Virgil L Woods, Jan Steyaert, Brian K Kobilka, Roger K Sunahara, and Georgios Skiniotis. Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. Proceedings of the National Academy of Sciences of the United States of America, 108(38):16086–16091, September 2011.

[175]   D G Lambright, J P Noel, H E Hamm, and P B Sigler. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature, 369(6482):621–628, June 1994.

[176]   Yi-Lynn Liang, Maryam Khoshouei, Mazdak Radjainia, Yan Zhang, Alisa Glukhova, Jeffrey Tarrasch, David M Thal, Sebastian G B Furness, George Christopoulos, Thomas Coudrat, Radostin Danev, Wolfgang Baumeister, Laurence J Miller, Arthur Christopoulos, Brian K Kobilka, Denise Wootten, Georgios Skiniotis, and Patrick M Sexton. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 159:986, April 2017.

[177]   Daniel Hilger, Matthieu Masureel, and Brian K Kobilka. Structure and dynamics of GPCR signaling complexes. Nature Structural & Molecular Biology, 25(1):4–12, January 2018.

[178]   Sebastian George Barton Furness, Yi-Lynn Liang, Cameron James Nowell, Michelle Louise Halls, Peter John Wookey, Emma Dal Maso, Asuka Inoue, Arthur Christopoulos, Denise Wootten, and Patrick Michael Sexton. Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy. Cell, 167(3):739–749.e11, October 2016.

[179]   Yuki Toyama, Hanaho Kano, Yoko Mase, Mariko Yokogawa, Masanori Osawa, and Ichio Shimada. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nature communications, 8:14523, February 2017.

[180]   Dawei Sun, Tilman Flock, Xavier Deupi, Shoji Maeda, Milos Matkovic, Sandro Mendieta, Daniel Mayer, Roger J P Dawson, Gebhard F X Schertler, M Madan Babu, and Dmitry B Veprintsev. Probing Gαi1 protein activation at single-amino acid resolution. Nature Structural & Molecular Biology, 22(9):686–694, September 2015.

[181]   David Goricanec, Ralf Stehle, Pascal Egloff, Simina Grigoriu, Andreas Plückthun, Gerhard Wagner, and Franz Hagn. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proceedings of the National Academy of Sciences of the United States of America, 113(26):E3629–38, June 2016.

[182]   Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins fold. Science, 334(6055):517–520, October 2011.

[183]   Ignasi Buch, Toni Giorgino, and Gianni De Fabritiis. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 108(25):10184–10189, June 2011.

[184]   Nuria Plattner and Frank Noé. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nature communications, 6:7653, July 2015.

[185]   Pratyush Tiwary, Vittorio Limongelli, Matteo Salvalaglio, and Michele Parrinello. Kinetics of protein-ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Proceedings of the National Academy of Sciences of the United States of America, 112(5):E386–91, February 2015.

[186]   Nuria Plattner, Stefan Doerr, Gianni De Fabritiis, and Frank Noé. Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nature chemistry, June 2017.

[187]   Guangfeng Zhou, George A Pantelopulos, Sudipto Mukherjee, and Vincent A Voelz. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. Biophysical Journal, 113(4):785–793, August 2017.

[188]   Ron O Dror, Thomas J Mildorf, Daniel Hilger, Aashish Manglik, David W Borhani, Daniel H Arlow, Ansgar Philippsen, Nicolas Villanueva, Zhongyu Yang, Michael T Lerch, Wayne L Hubbell, Brian K Kobilka, Roger K Sunahara, and David E Shaw. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science, 348(6241):1361–1365, June 2015.

[189]   Xin-Qiu Yao, Rabia U Malik, Nicholas W Griggs, Lars Skjćrven, John R Traynor, Sivaraj Sivaramakrishnan, and Barry J Grant. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins. Journal of Biological Chemistry, 291(9):4742–4753, February 2016.

[190]   Peter Chidiac, Vladislav S Markin, and Elliott M Ross. Kinetic control of guanine nucleotide binding to soluble Gαq. Biochemical pharmacology, 58(1):39–48, July 1999.

[191]   Elliott M Ross. Coordinating speed and amplitude in G-protein signaling. Current biology : CB, 18(17):R777–R783, September 2008.

[192]   S Mukhopadhyay and E M Ross. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proceedings of the National Academy of Sciences, 96(17):9539–9544, August 1999.

[193]   Catherine D Van Raamsdonk, Vladimir Bezrookove, Gary Green, Jürgen Bauer, Lona Gaugler, Joan M O’Brien, Elizabeth M Simpson, Gregory S Barsh, and Boris C Bastian. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229):599–602, January 2009.

[194]   Catherine D Van Raamsdonk, Klaus G Griewank, Michelle B Crosby, Maria C Garrido, Swapna Vemula, Thomas Wiesner, Anna C Obenauf, Werner Wackernagel, Gary Green, Nancy Bouvier, M Mert Sozen, Gail Baimukanova, Ritu Roy, Adriana Heguy, Igor Dolgalev, Raya Khanin, Klaus Busam, Michael R Speicher, Joan O’Brien, and Boris C Bastian. Mutations in GNA11 in uveal melanoma. The New England journal of medicine, 363(23):2191–2199, December 2010.

[195]   Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the National Academy of Sciences, 99(20):12562–12566, October 2002.

[196]   Gregory R Bowman, V S Pande, and F Noé. An introduction to Markov state models and their application to long timescale molecular simulation. Springer Science & Business Media, 1 edition, 2014.

[197]   James S Fraser, Michael W Clarkson, Sheena C Degnan, Renske Erion, Dorothee Kern, and Tom Alber. Hidden alternative structures of proline isomerase essential for catalysis. Nature, 462(7273):669–673, December 2009.

[198]   Byron Carpenter, Rony Nehmé, Tony Warne, Andrew G W Leslie, and Christopher G Tate. Structure of the adenosine Aˇsubż2Aˇ/subż receptor bound to an engineered G protein. Nature, 536(7614):104–107, August 2016.

[199]   D G Lambright, J Sondek, A Bohm, N P Skiba, H E Hamm, and P B Sigler. The 2.0 A crystal structure of a heterotrimeric G protein. Nature, 379(6563):311–319, January 1996.

[200]   J P Noel, H E Hamm, and P B Sigler. The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. Nature, 366(6456):654–663, December 1993.

[201]   B M Denker, C J Schmidt, and E J Neer. Promotion of the GTP-liganded state of the Go alpha protein by deletion of the C terminus. Journal of Biological Chemistry, 267(14):9998–10002, May 1992.

[202]   Ethan P Marin, A Gopala Krishna, , and Thomas P Sakmar. Disruption of the α5 Helix of Transducin Impairs Rhodopsin-Catalyzed Nucleotide Exchange. Biochemistry, 41(22):6988–6994, May 2002.

[203]   Akiyuki Nishimura, Ken Kitano, Jun Takasaki, Masatoshi Taniguchi, Norikazu Mizuno, Kenji Tago, Toshio Hakoshima, and Hiroshi Itoh. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 107(31):13666–13671, August 2010.

[204]   Xuhui Huang, Gregory R Bowman, Sergio Bacallado, and Vijay S Pande. Rapid equilibrium sampling initiated from nonequilibrium data. Proceedings of the National Academy of Sciences of the United States of America, 106(47):19765–19769, November 2009.

[205]   James F Dama, Michele Parrinello, and Gregory A Voth. Well-tempered metadynamics converges asymptotically. Physical review letters, 112(24):240602, June 2014.

[206]   Mithun Biswas, Benjamin Lickert, and Gerhard Stock. Metadynamics Enhanced Markov Modeling of Protein Dynamics. The Journal of Physical Chemistry B, page acs.jpcb.7b11800, January 2018.

[207]   Lu Zhang, Fátima Pardo-Avila, Ilona Christy Unarta, Peter Pak-Hang Cheung, Guo Wang, Dong Wang, and Xuhui Huang. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models. Accounts of chemical research, 49(4):687–694, April 2016.

[208]   Frank Noé, Christof Schütte, Eric Vanden-Eijnden, Lothar Reich, and Thomas R Weikl. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proceedings of the National Academy of Sciences of the United States of America, 106(45):19011–19016, November 2009.

[209]   E Weinan and E Vanden-Eijnden. Towards a Theory of Transition Paths. Journal of statistical physics, 2006.

[210]   Ned Van Eps, Anita M Preininger, Nathan Alexander, Ali I Kaya, Scott Meier, Jens Meiler, Heidi E Hamm, and Wayne L Hubbell. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proceedings of the National Academy of Sciences of the United States of America, 108(23):9420–9424, June 2011.

[211]   Hui-Woog Choe, Yong Ju Kim, Jung Hee Park, Takefumi Morizumi, Emil F Pai, Norbert Krauss, Klaus Peter Hofmann, Patrick Scheerer, and Oliver P Ernst. Crystal structure of metarhodopsin II. Nature, 471(7340):651–655, March 2011.

[212]   Yan Zhang, Bingfa Sun, Dan Feng, Hongli Hu, Matthew Chu, Qianhui Qu, Jeffrey T Tarrasch, Shane Li, Tong Sun Kobilka, Brian K Kobilka, and Georgios Skiniotis. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature, 1335:29, May 2017.

[213]   William M Oldham, Ned Van Eps, Anita M Preininger, Wayne L Hubbell, and Heidi E Hamm. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Structural & Molecular Biology, 13(9):772–777, September 2006.

[214]   T Iiri, P Herzmark, J M Nakamoto, C van Dop, and H R Bourne. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature, 371(6493):164–168, September 1994.

[215]   B A Posner, M B Mixon, M A Wall, S R Sprang, and A G Gilman. The A326S mutant of Gialpha1 as an approximation of the receptor-bound state. Journal of Biological Chemistry, 273(34):21752–21758, August 1998.

[216]   T C Thomas, C J Schmidt, and E J Neer. G-protein alpha o subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proceedings of the National Academy of Sciences, 90(21):10295–10299, November 1993.

[217]   Tilman Flock, Alexander S Hauser, Nadia Lund, David E Gloriam, Santhanam Balaji, and M Madan Babu. Selectivity determinants of GPCR-G-protein binding. Nature, 88:263, May 2017.

[218]   Mark E Hatley, Steve W Lockless, Scott K Gibson, Alfred G Gilman, and Rama Ranganathan. Allosteric determinants in guanine nucleotide-binding proteins. Proceedings of the National Academy of Sciences, 100(24):14445–14450, November 2003.

[219]   Rolf Herrmann, Martin Heck, Petra Henklein, Peter Henklein, P Henklein, Christiane Kleuss, Klaus Peter Hofmann, and Oliver P Ernst. Sequence of interactions in receptor-G protein coupling. Journal of Biological Chemistry, 279(23):24283–24290, June 2004.

[220]   Anita M Preininger, Jens Meiler, and Heidi E Hamm. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. Journal of Molecular Biology, 425(13):2288–2298, July 2013.

[221]   B Zhang, Y Zhang, Z Wang, and Y Zheng. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. Journal of Biological Chemistry, 275(33):25299–25307, August 2000.

[222]   Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C Smith, Berk Hess, and Erik Lindahl. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2:19–25, September 2015.

[223]   Kristin L Meagher, Luke T Redman, and Heather A Carlson. Development of polyphosphate parameters for use with the AMBER force field. Journal of computational chemistry, 24(9):1016–1025, July 2003.

[224]   Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1):014101, January 2007.

[225]   Jiri Kolafa and John W Perram. Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems. Molecular Simulation, 9(5):351–368, October 2006.

[226]   Berk Hess. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory and Computation, 4(1):116–122, January 2008.

[227]   M Parrinello and A Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52(12):7182–7190, December 1981.

[228]   K A Feenstra, B Hess, and HJC Berendsen. Improving efficiency of large timescale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem, 20(8):786–798, June 1999.

[229]   Gareth A Tribello, Massimiliano Bonomi, Davide Branduardi, Carlo Camilloni, and Giovanni Bussi. PLUMED 2: New feathers for an old bird. Computer Physics Communications, 185(2):604–613, February 2014.

[230]   Kyle A Beauchamp, Gregory R Bowman, Thomas J Lane, Lutz Maibaum, Imran S Haque, and Vijay S Pande. MSMBuilder2: Modeling Conformational Dynamics at the Picosecond to Millisecond Scale. Journal of Chemical Theory and Computation, 7(10):3412–3419, October 2011.

[231]   Luca Maragliano, Alexander Fischer, Eric Vanden-Eijnden, and Giovanni Ciccotti. String method in collective variables: minimum free energy paths and isocommittor surfaces. The Journal of chemical physics, 125(2):24106, July 2006.

[232]   Luca Maragliano and Eric Vanden-Eijnden. On-the-fly string method for minimum free energy paths calculation. Chemical physics letters, 446(1-3):182–190, September 2007.

[233]   Luca Maragliano, Benoît Roux, and Eric Vanden-Eijnden. Comparison between Mean Forces and Swarms-of-Trajectories String Methods. Journal of Chemical Theory and Computation, 10(2):524–533, February 2014.

[234]   Gregory R Bowman, Xuhui Huang, and Vijay S Pande. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods (San Diego, Calif.), 49(2):197–201, October 2009.

[235]   Fu Kit Sheong, Daniel-Adriano Silva, Luming Meng, Yutong Zhao, and Xuhui Huang. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. Journal of Chemical Theory and Computation, 11(1):17–27, January 2015.

[236]   William C Swope, Jed W Pitera, and Frank Suits. Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. Theory . The Journal of Physical Chemistry B, 108(21):6571–6581, May 2004.

[237]   C E Shannon. A Mathematical Theory of Communication. Bell Labs Technical Journal, 27(3):379–423, July 1948.

[238]   Philipp Metzner, Christof Sch tte, and Eric Vanden-Eijnden. Transition Path Theory for Markov Jump Processes. Multiscale Modeling & Simulation, 7(3):1192–1219, January 2009.

[239]   Andrew L. Hopkins and Colin R. Groom. The druggable genome. Nature Reviews Drug Discovery, 1(9):727–730, September 2002.

[240]   David K. Johnson and John Karanicolas. Computational screening and design for compounds that disrupt protein-protein interactions. Current Topics in Medicinal Chemistry, 17(23):2703–2714, August 2017.

[241]   Sandor Vajda, Dmitri Beglov, Amanda E Wakefield, Megan Egbert, and Adrian Whitty. Cryptic binding sites on proteins: definition, detection, and druggability. Current Opinion in Chemical Biology, 44:1–8, June 2018.

[242]   D. A. Erlanson, A. C. Braisted, D. R. Raphael, M. Randal, R. M. Stroud, E. M. Gordon, and J. A. Wells. Site-directed ligand discovery. Proceedings of the National Academy of Sciences, 97(17):9367–9372, August 2000.

[243]   Daniel A Keedy, Zachary B Hill, Justin T Biel, Emily Kang, T Justin Rettenmaier, José Brandăo-Neto, Nicholas M Pearce, Frank von Delft, James A Wells, and James S Fraser. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. eLife, 7:e36307, June 2018.

[244]   David K. Johnson and John Karanicolas. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Computational Biology, 9(3):e1002951, March 2013.

[245]   Vladimiras Oleinikovas, Giorgio Saladino, Benjamin P. Cossins, and Francesco L. Gervasio. Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. Journal of the American Chemical Society, 138(43):14257–14263, November 2016.

[246]   Peter Cimermancic, Patrick Weinkam, T. Justin Rettenmaier, Leon Bichmann, Daniel A. Keedy, Rahel A. Woldeyes, Dina Schneidman-Duhovny, Omar N. Demerdash, Julie C. Mitchell, James A. Wells, James S. Fraser, and Andrej Sali. Cryptosite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. Journal of Molecular Biology, 428(4):709–719, February 2016.

[247]   Denis Schmidt, Markus Boehm, Christopher L. McClendon, Rubben Torella, and Holger Gohlke. Cosolvent-enhanced sampling and unbiased identification of cryptic pockets suitable for structure-based drug design. Journal of Chemical Theory and Computation, 15(5):3331–3343, May 2019.

[248]   Rémi Cuchillo, Kevin Pinto-Gil, and Julien Michel. A collective variable for the rapid exploration of protein druggability. Journal of Chemical Theory and Computation, 11(3):1292–1307, March 2015.

[249]   Phani Ghanakota and Heather A. Carlson. Moving beyond active-site detection: mixmd applied to allosteric systems. The Journal of Physical Chemistry B, 120(33):8685–8695, August 2016.

[250]   Christopher D. Wassman, Roberta Baronio, Özlem Demir, Brad D. Wallentine, Chiung-Kuang Chen, Linda V. Hall, Faezeh Salehi, Da-Wei Lin, Benjamin P. Chung, G. Wesley Hatfield, A. Richard Chamberlin, Hartmut Luecke, Richard H. Lathrop, Peter Kaiser, and Rommie E. Amaro. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nature Communications, 4(1):1407, June 2013.

[251]   Rohan Keshwara, Reed F. Johnson, and Matthias J. Schnell. Toward an effective ebola virus vaccine. Annual Review of Medicine, 68(1):371–386, January 2017.

[252]   Sabue Mulangu, Lori E. Dodd, Richard T. Davey, Olivier Tshiani Mbaya, Michael Proschan, Daniel Mukadi, Mariano Lusakibanza Manzo, Didier Nzolo, Antoine Tshomba Oloma, Augustin Ibanda, Rosine Ali, Sinaré Coulibaly, Adam C. Levine, Rebecca Grais, Janet Diaz, H. Clifford Lane, Jean-Jacques Muyembe-Tamfum, and the PALM Writing Group. A randomized, controlled trial of ebola virus disease therapeutics. New England Journal of Medicine, 381(24):2293–2303, December 2019.

[253]   Ilhem Messaoudi, Gaya K. Amarasinghe, and Christopher F. Basler. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nature Reviews Microbiology, 13(11):663–676, November 2015.

[254]   Washington B. Cardenas, Yueh-Ming Loo, Michael Gale, Amy L. Hartman, Christopher R. Kimberlin, Luis Martinez-Sobrido, Erica Ollmann Saphire, and Christopher F. Basler. Ebola virus vp35 protein binds double-stranded rna and inhibits alpha/beta interferon production induced by rig-i signaling. Journal of Virology, 80(11):5168–5178, June 2006.

[255]   Christopher F. Basler, Andrea Mikulasova, Luis Martinez-Sobrido, Jason Paragas, Elke Muhlberger, Mike Bray, Hans-Dieter Klenk, Peter Palese, and Adolfo Garcia-Sastre. The ebola virus vp35 protein inhibits activation of interferon regulatory factor 3. Journal of Virology, 77(14):7945–7956, July 2003.

[256]   Amy L. Hartman, Jonathan S. Towner, and Stuart T. Nichol. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology, 328(2):177–184, October 2004.

[257]   D. W. Leung, N. D. Ginder, D. B. Fulton, J. Nix, C. F. Basler, R. B. Honzatko, and G. K. Amarasinghe. Structure of the Ebola VP35 interferon inhibitory domain. Proceedings of the National Academy of Sciences, 106(2):411–416, January 2009.

[258]   Daisy W Leung, Kathleen C Prins, Dominika M Borek, Mina Farahbakhsh, JoAnn M Tufariello, Parameshwaran Ramanan, Jay C Nix, Luke A Helgeson, Zbyszek Otwinowski, Richard B Honzatko, Christopher F Basler, and Gaya K Amarasinghe. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nature Structural & Molecular Biology, 17(2):165–172, February 2010.

[259]   Megan R. Edwards, Gai Liu, Chad E. Mire, Suhas Sureshchandra, Priya Luthra, Benjamin Yen, Reed S. Shabman, Daisy W. Leung, Ilhem Messaoudi, Thomas W. Geisbert, Gaya K. Amarasinghe, and Christopher F. Basler. Differential regulation of interferon responses by ebola and marburg virus vp35 proteins. Cell Reports, 14(7):1632–1640, February 2016.

[260]   Amy L. Hartman, Jason E. Dover, Jonathan S. Towner, and Stuart T. Nichol. Reverse genetic generation of recombinant zaire ebola viruses containing disrupted irf-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of irf-3 activation without inhibiting viral transcription or replication. Journal of Virology, 80(13):6430–6440, July 2006.

[261]   Kathleen C. Prins, Sebastien Delpeut, Daisy W. Leung, Olivier Reynard, Valentina A. Volchkova, St. Patrick Reid, Parameshwaran Ramanan, Washington B. Cardenas, Gaya K. Amarasinghe, Viktor E. Volchkov, and Christopher F. Basler. Mutations abrogating vp35 interaction with double-stranded rna render ebola virus avirulent in guinea pigs. Journal of Virology, 84(6):3004–3015, March 2010.

[262]   Kathleen C. Prins, Jennifer M. Binning, Reed S. Shabman, Daisy W. Leung, Gaya K. Amarasinghe, and Christopher F. Basler. Basic residues within the ebolavirus vp35 protein are required for its viral polymerase cofactor function. Journal of Virology, 84(20):10581–10591, October 2010.

[263]   Craig S. Brown, Michael S. Lee, Daisy W. Leung, Tianjiao Wang, Wei Xu, Priya Luthra, Manu Anantpadma, Reed S. Shabman, Lisa M. Melito, Karen S. MacMillan, Dominika M. Borek, Zbyszek Otwinowski, Parameshwaran Ramanan, Alisha J. Stubbs, Dayna S. Peterson, Jennifer M. Binning, Marco Tonelli, Mark A. Olson, Robert A. Davey, Joseph M. Ready, Christopher F. Basler, and Gaya K. Amarasinghe. In silico derived small molecules bind the filovirus vp35 protein and inhibit its polymerase cofactor activity. Journal of Molecular Biology, 426(10):2045–2058, May 2014.

[264]   Jason G. Glanzer, Brendan M. Byrne, Aaron M. McCoy, Ben J. James, Joshua D. Frank, and Greg G. Oakley. In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors. Bioorganic & Medicinal Chemistry, 24(21):5388–5392, November 2016.

[265]   Vijay S. Pande, Kyle Beauchamp, and Gregory R. Bowman. Everything you wanted to know about Markov State Models but were afraid to ask. Methods, 52(1):99–105, September 2010.

[266]   Gregory R Bowman, Xuhui Huang, and Vijay S Pande. Network models for molecular kinetics and their initial applications to human health. Cell Research, 20(6):622–630, June 2010.

[267]   Eugen Hruska, Jayvee R Abella, Feliks Nüske, Lydia E Kavraki, and Cecilia Clementi. Quantitative comparison of adaptive sampling methods for protein dynamics. The Journal of chemical physics, 149(24):244119, December 2018.

[268]   Dmitri Beglov, David R Hall, Amanda E Wakefield, Lingqi Luo, Karen N Allen, Dima Kozakov, Adrian Whitty, and Sandor Vajda. Exploring the structural origins of cryptic sites on proteins. Proceedings of the National Academy of Sciences of the United States of America, 115(15):E3416–E3425, March 2018.

[269]   C. H. Ngan, T. Bohnuud, S. E. Mottarella, D. Beglov, E. A. Villar, D. R. Hall, D. Kozakov, and S. Vajda. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Research, 40(W1):W271–W275, July 2012.

[270]   Dima Kozakov, Laurie E Grove, David R Hall, Tanggis Bohnuud, Scott E Mottarella, Lingqi Luo, Bing Xia, Dmitri Beglov, and Sandor Vajda. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5):733–755, May 2015.

[271]   R. Bernstein, K. L. Schmidt, P. B. Harbury, and S. Marqusee. Structural and kinetic mapping of side-chain exposure onto the protein energy landscape. Proceedings of the National Academy of Sciences, 108(26):10532–10537, June 2011.

[272]   Gai Liu, Peter J. Nash, Britney Johnson, Colette Pietzsch, Ma. Xenia G. Ilagan, Alexander Bukreyev, Christopher F. Basler, Terry L. Bowlin, Donald T. Moir, Daisy W. Leung, and Gaya K. Amarasinghe. A sensitive in vitro high-throughput screen to identify pan-filoviral replication inhibitors targeting the vp35–np interface. ACS Infectious Diseases, 3(3):190–198, March 2017.

[273]   Alexander G. Kozlov, Roberto Galletto, and Timothy M. Lohman. Ssb–dna binding monitored by fluorescence intensity and anisotropy. In James L. Keck, editor, Single-Stranded DNA Binding Proteins, pages 55–83. Humana Press, Totowa, NJ, 2012.

[274]   P. Ramanan, M. R. Edwards, R. S. Shabman, D. W. Leung, A. C. Endlich-Frazier, D. M. Borek, Z. Otwinowski, G. Liu, J. Huh, C. F. Basler, and G. K. Amarasinghe. Structural basis for Marburg virus VP35-mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences, 109(50):20661–20666, December 2012.

[275]   A. Shrake and J.A. Rupley. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. Journal of Molecular Biology, 79(2):351–371, September 1973.

[276]   Brendan J Frey and Delbert Dueck. Clustering by Passing Messages Between Data Points. Science, 315(5814):972–976, February 2007.

[277]   Navid Dianati. Unwinding the hairball graph: Pruning algorithms for weighted complex networks. Physical review. E, 93(1):012304, January 2016.

[278]   Maxwell I. Zimmerman, Kathryn M. Hart, Carrie A. Sibbald, Thomas E. Frederick, John R. Jimah, Catherine R. Knoverek, Niraj H. Tolia, and Gregory R. Bowman. Prediction of new stabilizing mutations based on mechanistic insights from markov state models. ACS Central Science, 3(12):1311–1321, December 2017.

[279]   Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang Zhao, Baoying Huang, Weifeng Shi, Roujian Lu, Peihua Niu, Faxian Zhan, Xuejun Ma, Dayan Wang, Wenbo Xu, Guizhen Wu, George F Gao, Wenjie Tan, and China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 382(8):727–733, February 2020.

[280]   Victor M Corman, Doreen Muth, Daniela Niemeyer, and Christian Drosten. Chapter eight - hosts and sources of endemic human coronaviruses. In Margaret Kielian, Thomas C Mettenleiter, and Marilyn J Roossinck, editors, Advances in Virus Research, volume 100, pages 163–188. Academic Press, January 2018.

[281]   Max Roser, Hannah Ritchie, Esteban Ortiz-Ospina, and Joe Hasell. Coronavirus pandemic (COVID-19). Our World in Data, 2020.

[282]   Nicole Lurie, Melanie Saville, Richard Hatchett, and Jane Halton. Developing covid-19 vaccines at pandemic speed. N. Engl. J. Med., 382(21):1969–1973, May 2020.

[283]   David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O’Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, Tia A Tummino, Ruth Huettenhain, Robyn M Kaake, Alicia L Richards, Beril Tutuncuoglu, Helene Foussard, Jyoti Batra, Kelsey Haas, Maya Modak, Minkyu Kim, Paige Haas, Benjamin J Polacco, Hannes Braberg, Jacqueline M Fabius, Manon Eckhardt, Margaret Soucheray, Melanie J Bennett, Merve Cakir, Michael J McGregor, Qiongyu Li, Bjoern Meyer, Ferdinand Roesch, Thomas Vallet, Alice Mac Kain, Lisa Miorin, Elena Moreno, Zun Zar Chi Naing, Yuan Zhou, Shiming Peng, Ying Shi, Ziyang Zhang, Wenqi Shen, Ilsa T Kirby, James E Melnyk, John S Chorba, Kevin Lou, Shizhong A Dai, Inigo Barrio-Hernandez, Danish Memon, Claudia Hernandez-Armenta, Jiankun Lyu, Christopher J P Mathy, Tina Perica, Kala B Pilla, Sai J Ganesan, Daniel J Saltzberg, Ramachandran Rakesh, Xi Liu, Sara B Rosenthal, Lorenzo Calviello, Srivats Venkataramanan, Jose Liboy-Lugo, Yizhu Lin, Xi-Ping Huang, Yongfeng Liu, Stephanie A Wankowicz, Markus Bohn, Maliheh Safari, Fatima S Ugur, Cassandra Koh, Nastaran Sadat Savar, Quang Dinh Tran, Djoshkun Shengjuler, Sabrina J Fletcher, Michael C O’Neal, Yiming Cai, Jason C J Chang, David J Broadhurst, Saker Klippsten, Phillip P Sharp, Nicole A Wenzell, Duygu Kuzuoglu, Hao-Yuan Wang, Raphael Trenker, Janet M Young, Devin A Cavero, Joseph Hiatt, Theodore L Roth, Ujjwal Rathore, Advait Subramanian, Julia Noack, Mathieu Hubert, Robert M Stroud, Alan D Frankel, Oren S Rosenberg, Kliment A Verba, David A Agard, Melanie Ott, Michael Emerman, Natalia Jura, Mark von Zastrow, Eric Verdin, Alan Ashworth, Olivier Schwartz, Christophe d’Enfert, Shaeri Mukherjee, Matt Jacobson, Harmit S Malik, Danica G Fujimori, Trey Ideker, Charles S Craik, Stephen N Floor, James S Fraser, John D Gross, Andrej Sali, Bryan L Roth, Davide Ruggero, Jack Taunton, Tanja Kortemme, Pedro Beltrao, Marco Vignuzzi, Adolfo García-Sastre, Kevan M Shokat, Brian K Shoichet, and Nevan J Krogan. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, April 2020.

[284]   James M Sanders, Marguerite L Monogue, Tomasz Z Jodlowski, and James B Cutrell. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, April 2020.

[285]   Alexandra C Walls, Young-Jun Park, M Alejandra Tortorici, Abigail Wall, Andrew T McGuire, and David Veesler. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2):281–292.e6, April 2020.

[286]   Markus Hoffmann, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S Schiergens, Georg Herrler, Nai-Huei Wu, Andreas Nitsche, Marcel A Müller, Christian Drosten, and Stefan Pöhlmann. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2):271–280.e8, April 2020.

[287]   Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara, Qibin Geng, Ashley Auerbach, and Fang Li. Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807):221–224, May 2020.

[288]   Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, Xuanling Shi, Qisheng Wang, Linqi Zhang, and Xinquan Wang. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807):215–220, May 2020.

[289]   Paul S. Masters. Coronavirus genomic RNA packaging. Virology, 537:198–207, November 2019.

[290]   Robin van der Lee, Marija Buljan, Benjamin Lang, Robert J Weatheritt, Gary W Daughdrill, A Keith Dunker, Monika Fuxreiter, Julian Gough, Joerg Gsponer, David T Jones, Philip M Kim, Richard W Kriwacki, Christopher J Oldfield, Rohit V Pappu, Peter Tompa, Vladimir N Uversky, Peter E Wright, and M Madan Babu. Classification of intrinsically disordered regions and proteins. Chem. Rev., 114(13):6589–6631, July 2014.

[291]   Hubert Laude and Paul S Masters. The coronavirus nucleocapsid protein. In Stuart G Siddell, editor, The Coronaviridae, pages 141–163. Springer US, Boston, MA, 1995.

[292]   Erik D Holmstrom, Zhaowei Liu, Daniel Nettels, Robert B Best, and Benjamin Schuler. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun., 10(1):2453, June 2019.

[293]   Alessandro Borgia, Madeleine B Borgia, Katrine Bugge, Vera M Kissling, Pétur O Heidarsson, Catarina B Fernandes, Andrea Sottini, Andrea Soranno, Karin J Buholzer, Daniel Nettels, Birthe B Kragelund, Robert B Best, and Benjamin Schuler. Extreme disorder in an ultrahigh-affinity protein complex. Nature, 555:61, February 2018.

[294]   Mykola Dimura, Thomas O Peulen, Christian A Hanke, Aiswaria Prakash, Holger Gohlke, and Claus Am Seidel. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol., 40:163–185, October 2016.

[295]   Gustavo Fuertes, Niccolň Banterle, Kiersten M Ruff, Aritra Chowdhury, Davide Mercadante, Christine Koehler, Michael Kachala, Gemma Estrada Girona, Sigrid Milles, Ankur Mishra, Patrick R Onck, Frauke Gräter, Santiago Esteban-Martín, Rohit V Pappu, Dmitri I Svergun, and Edward A Lemke. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc. Natl. Acad. Sci. U. S. A., 114(31):E6342–E6351, August 2017.

[296]   John B Warner, 4th, Kiersten M Ruff, Piau Siong Tan, Edward A Lemke, Rohit V Pappu, and Hilal A Lashuel. Monomeric huntingtin exon 1 has similar overall structural features for Wild-Type and pathological polyglutamine lengths. J. Am. Chem. Soc., 139(41):14456–14469, October 2017.

[297]   Hoi Sung Chung, Stefano Piana-Agostinetti, David E Shaw, and William A Eaton. Structural origin of slow diffusion in protein folding. Science, 349(6255):1504–1510, September 2015.

[298]   Christiane Iserman, Christine Anne Roden, Mark Boerneke, Rachel Sealfon, Grace McLaughlin, Irwin Jungreis, Christopher Y Park, Avinash Boppana, Ethan Fritch, Yixuan Hou, Chandra Theesfeld, Olga Troyanskaya, Ralph S G Baric, Timothy P Sheahan, Kevin Weeks, and Amy Gladfelter. Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. June 2020.

[299]   Theodora Myrto Perdikari, Anastasia C Murthy, Veronica H Ryan, Scott Watters, Mandar T Naik, and Nicolas L Fawzi. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. June 2020.

[300]   Adriana Savastano, Alain Ibáńez de Opakua, Marija Rankovic, and Markus Zweckstetter. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. June 2020.

[301]   Ruth McBride, Marjorie van Zyl, and Burtram Fielding. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8):2991–3018, August 2014.

[302]   N A Baker, D Sept, S Joseph, M J Holst, and J A McCammon. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U. S. A., 98(18):10037–10041, August 2001.

[303]   Chung-Ke Chang, Yen-Lan Hsu, Yuan-Hsiang Chang, Fa-An Chao, Ming-Chya Wu, Yu-Shan Huang, Chin-Kun Hu, and Tai-Huang Huang. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J. Virol., 83(5):2255–2264, March 2009.

[304]   Nicholas E Grossoehme, Lichun Li, Sarah C Keane, Pinghua Liu, Charles E Dann, 3rd, Julian L Leibowitz, and David P Giedroc. Coronavirus N protein n-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J. Mol. Biol., 394(3):544–557, December 2009.

[305]   Lei Cui, Haiying Wang, Yanxi Ji, Jie Yang, Shan Xu, Xingyu Huang, Zidao Wang, Lei Qin, Po Tien, Xi Zhou, Deyin Guo, and Yu Chen. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J. Virol., 89(17):9029–9043, September 2015.

[306]   Mitsuhiro Takeda, Chung-Ke Chang, Teppei Ikeya, Peter Güntert, Yuan-Hsiang Chang, Yen-Lan Hsu, Tai-Huang Huang, and Masatsune Kainosho. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J. Mol. Biol., 380(4):608–622, July 2008.

[307]   Hariharan Jayaram, Hui Fan, Brian R Bowman, Amy Ooi, Jyothi Jayaram, Ellen W Collisson, Julien Lescar, and B V Venkataram Prasad. X-ray structures of the N- and c-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J. Virol., 80(13):6612–6620, July 2006.

[308]   I-Mei Yu, Christin L T Gustafson, Jianbo Diao, John W Burgner, 2nd, Zhihong Li, Jingqiang Zhang, and Jue Chen. Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its c-terminal domain. J. Biol. Chem., 280(24):23280–23286, June 2005.

[309]   Haibin Luo, Jing Chen, Kaixian Chen, Xu Shen, and Hualiang Jiang. Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: self-association analysis and nucleic acid binding characterization. Biochemistry, 45(39):11827–11835, October 2006.

[310]   Chung-Ke Chang, Chia-Min Michael Chen, Ming-Hui Chiang, Yen-Lan Hsu, and Tai-Huang Huang. Transient oligomerization of the SARS-CoV N protein–implication for virus ribonucleoprotein packaging. PLoS One, 8(5):e65045, May 2013.

[311]   S G Robbins, M F Frana, J J McGowan, J F Boyle, and K V Holmes. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology, 150(2):402–410, April 1986.

[312]   Runtao He, Frederick Dobie, Melissa Ballantine, Andrew Leeson, Yan Li, Nathalie Bastien, Todd Cutts, Anton Andonov, Jingxin Cao, Timothy F Booth, Frank A Plummer, Shaun Tyler, Lindsay Baker, and Xuguang Li. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun., 316(2):476–483, April 2004.

[313]   Sisi Kang, Mei Yang, Zhongsi Hong, Liping Zhang, Zhaoxia Huang, Xiaoxue Chen, Suhua He, Ziliang Zhou, Zhechong Zhou, Qiuyue Chen, Yan Yan, Changsheng Zhang, Hong Shan, and Shoudeng Chen. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B, April 2020.

[314]   Luca Zinzula, Massimiliano Orsini Nagy, and Andreas Bracher. 1.45 angstrom resolution crystal structure of c-terminal dimerization domain of nucleocapsid phosphoprotein from SARS-CoV-2 (PDB: 6YUN). Protein Data Bank, May 2020.

[315]   Qiaozhen Ye, Alan M V West, Steve Silletti, and Kevin D Corbett. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. June 2020.

[316]   Weihong Zeng, Guangfeng Liu, Huan Ma, Dan Zhao, Yunru Yang, Muziying Liu, Ahmed Mohammed, Changcheng Zhao, Yun Yang, Jiajia Xie, Chengchao Ding, Xiaoling Ma, Jianping Weng, Yong Gao, Hongliang He, and Tengchuan Jin. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun., 527(3):618–623, June 2020.

[317]   Daniel Nettels, Sonja Müller-Späth, Frank Küster, Hagen Hofmann, Dominik Haenni, Stefan Rüegger, Luc Reymond, Armin Hoffmann, Jan Kubelka, Benjamin Heinz, Klaus Gast, Robert B Best, and Benjamin Schuler. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc. Natl. Acad. Sci. U. S. A., 106(49):20740–20745, December 2009.

[318]   Andrea Soranno, Brigitte Buchli, Daniel Nettels, Ryan R Cheng, Sonja Müller-Späth, Shawn H Pfeil, Armin Hoffmann, Everett A Lipman, Dmitrii E Makarov, and Benjamin Schuler. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 109(44):17800–17806, October 2012.

[319]   Alessandro Borgia, Beth G Wensley, Andrea Soranno, Daniel Nettels, Madeleine B Borgia, Armin Hoffmann, Shawn H Pfeil, Everett A Lipman, Jane Clarke, and Benjamin Schuler. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat. Commun., 3:1195, 2012.

[320]   Benjamin Schuler, Andrea Soranno, Hagen Hofmann, and Daniel Nettels. Single-Molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys., 45:207–231, July 2016.

[321]   A Soranno, F Cabassi, M E Orselli, and others. Dynamics of structural elements of GB1 β-Hairpin revealed by Tryptophan–Cysteine contact formation experiments. The Journal of, 2018.

[322]   Andrea Soranno, Andrea Holla, Fabian Dingfelder, Daniel Nettels, Dmitrii E Makarov, and Benjamin Schuler. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl. Acad. Sci. U. S. A., 114(10):E1833–E1839, March 2017.

[323]   J A Schellman. Selective binding and solvent denaturation. Biopolymers, 26(4):549–559, April 1987.

[324]   Hagen Hofmann, Andrea Soranno, Alessandro Borgia, Klaus Gast, Daniel Nettels, and Benjamin Schuler. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc. Natl. Acad. Sci. U. S. A., 109(40):16155–16160, September 2012.

[325]   Alessandro Borgia, Wenwei Zheng, Karin Buholzer, Madeleine B Borgia, Anja Schüler, Hagen Hofmann, Andrea Soranno, Daniel Nettels, Klaus Gast, Alexander Grishaev, and Others. Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J. Am. Chem. Soc., 138(36):11714–11726, 2016.

[326]   Wenwei Zheng, Alessandro Borgia, Karin Buholzer, Alexander Grishaev, Benjamin Schuler, and Robert B Best. Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment. J. Am. Chem. Soc., 138(36):11702–11713, September 2016.

[327]   Mikayel Aznauryan, Leonildo Delgado, Andrea Soranno, Daniel Nettels, Jie-Rong Huang, Alexander M Labhardt, Stephan Grzesiek, and Benjamin Schuler. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc. Natl. Acad. Sci. U. S. A., 113(37):E5389–98, September 2016.

[328]   Peter Tompa and Monika Fuxreiter. Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci., 33(1):2–8, 2008.

[329]   Alex S Holehouse, Kanchan Garai, Nicholas Lyle, Andreas Vitalis, and Rohit V Pappu. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J. Am. Chem. Soc., 137(8):2984–2995, March 2015.

[330]   Daniel Nettels, Irina V Gopich, Armin Hoffmann, and Benjamin Schuler. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl. Acad. Sci. U. S. A., 104(8):2655–2660, February 2007.

[331]   Markus Sauer and Hannes Neuweiler. PET-FCS: probing rapid structural fluctuations of proteins and nucleic acids by single-molecule fluorescence quenching. Methods Mol. Biol., 1076:597–615, 2014.

[332]   Dominik Haenni, Franziska Zosel, Luc Reymond, Daniel Nettels, and Benjamin Schuler. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J. Phys. Chem. B, 117(42):13015–13028, October 2013.

[333]   Franziska Zosel, Dominik Haenni, Andrea Soranno, Daniel Nettels, and Benjamin Schuler. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein. J. Chem. Phys., 147(15):152708, October 2017.

[334]   Salman F Banani, Hyun O Lee, Anthony A Hyman, and Michael K Rosen. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 18(5):285–298, May 2017.

[335]   Yongdae Shin and Clifford P Brangwynne. Liquid phase condensation in cell physiology and disease. Science, 357(6357), September 2017.

[336]   Clifford P Brangwynne, Christian R Eckmann, David S Courson, Agata Rybarska, Carsten Hoege, Joebin Gharakhani, Frank Juelicher, and Anthony A Hyman. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324(5935):1729–1732, June 2009.

[337]   Pilong Li, Sudeep Banjade, Hui-Chun Cheng, Soyeon Kim, Baoyu Chen, Liang Guo, Marc Llaguno, Javoris V Hollingsworth, David S King, Salman F Banani, Paul S Russo, Qiu-Xing Jiang, B Tracy Nixon, and Michael K Rosen. Phase transitions in the assembly of multivalent signalling proteins. Nature, 483(7389):336–340, March 2012.

[338]   Erik W Martin, Alex S Holehouse, Ivan Peran, Mina Farag, J Jeremias Incicco, Anne Bremer, Christy R Grace, Andrea Soranno, Rohit V Pappu, and Tanja Mittag. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 367(6478):694–699, February 2020.

[339]   Jordina Guillén-Boixet, Andrii Kopach, Alex S Holehouse, Sina Wittmann, Marcus Jahnel, Raimund Schlüßler, Kyoohyun Kim, Irmela R E, Jie Wang, Daniel Mateju, Ina Poser, Shovamayee Maharana, Martine Ruer-Gruß, Doris Richter, Xiaojie Zhang, Young-Tae Chang, Jochen Guck, Alf Honigmann, Julia Mahamid, Anthony A Hyman, Rohit V Pappu, Simon Alberti, and Titus M Franzmann. RNA-Induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell, 181(2):346–361.e17, April 2020.

[340]   Jie Wang, Jeong-Mo Choi, Alex S Holehouse, Hyun O Lee, Xiaojie Zhang, Marcus Jahnel, Shovamayee Maharana, Régis Lemaitre, Andrei Pozniakovsky, David Drechsel, Ina Poser, Rohit V Pappu, Simon Alberti, and Anthony A Hyman. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell, June 2018.

[341]   W H Stockmayer. Light scattering in Multi-Component systems. J. Chem. Phys., 18(1):58–61, January 1950.

[342]   Priya R Banerjee, Anthony N Milin, Mahdi Muhammad Moosa, Paulo L Onuchic, and Ashok A Deniz. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed Engl., 56(38):11354–11359, September 2017.

[343]   Serafima Guseva, Sigrid Milles, Malene Ringkjřbing Jensen, Nicola Salvi, Jean-Philippe Kleman, Damien Maurin, Rob W H Ruigrok, and Martin Blackledge. Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv, 6(14):eaaz7095, April 2020.

[344]   Ammon E Posey, Alex S Holehouse, and Rohit V Pappu. Chapter one - phase separation of intrinsically disordered proteins. In Elizabeth Rhoades, editor, Methods in Enzymology, volume 611, pages 1–30. Academic Press, January 2018.

[345]   David W Sanders, Nancy Kedersha, Daniel S W Lee, Amy R Strom, Victoria Drake, Joshua A Riback, Dan Bracha, Jorine M Eeftens, Allana Iwanicki, Alicia Wang, Ming-Tzo Wei, Gena Whitney, Shawn M Lyons, Paul Anderson, William M Jacobs, Pavel Ivanov, and Clifford P Brangwynne. Competing Protein-RNA interaction networks control multiphase intracellular organization. Cell, 181(2):306–324.e28, April 2020.

[346]   Joshua A Riback, Lian Zhu, Mylene C Ferrolino, Michele Tolbert, Diana M Mitrea, David W Sanders, Ming-Tzo Wei, Richard W Kriwacki, and Clifford P Brangwynne. Composition-dependent thermodynamics of intracellular phase separation. Nature, 581(7807):209–214, May 2020.

[347]   Alexander N Semenov and Michael Rubinstein. Thermoreversible gelation in solutions of associative polymers. 1. statics. Macromolecules, 31(4):1373–1385, February 1998.

[348]   M Rubinstein and Ralph H Colby. Polymer Physics. Oxford University Press, New York, 2003.

[349]   Jeong-Mo Choi, Alex S Holehouse, and Rohit V Pappu. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys., 49:107–133, May 2020.

[350]   Jeong-Mo Choi, Furqan Dar, and Rohit V Pappu. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput. Biol., 15(10):e1007028, October 2019.

[351]   Carol Beth Post and Bruno H Zimm. Internal condensation of a single DNA molecule. Biopolymers, 18(6):1487–1501, June 1979.

[352]   Ping-Kun Hsieh, Shin C Chang, Chu-Chun Huang, Ting-Ting Lee, Ching-Wen Hsiao, Yi-Hen Kou, I-Yin Chen, Chung-Ke Chang, Tai-Huang Huang, and Ming-Fu Chang. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol., 79(22):13848–13855, November 2005.

[353]   K Woo, M Joo, K Narayanan, K H Kim, and S Makino. Murine coronavirus packaging signal confers packaging to nonviral RNA. J. Virol., 71(1):824–827, January 1997.

[354]   R Cologna and B G Hogue. Identification of a bovine coronavirus packaging signal. J. Virol., 74(1):580–583, January 2000.

[355]   René Pool and Peter G Bolhuis. Sampling the kinetic pathways of a micelle fusion and fission transition. J. Chem. Phys., 126(24):244703, June 2007.

[356]   Antonia G Denkova, Eduardo Mendes, and Marc-Olivier Coppens. Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions. Soft Matter, 6(11):2351–2357, 2010.

[357]   Srivastav Ranganathan and Eugene I Shakhnovich. Dynamic metastable long-living droplets formed by sticker-spacer proteins. Elife, 9, June 2020.

[358]   Cédric Leyrat, Malene Ringkjřbing Jensen, Euripedes A Ribeiro, Jr, Francine C A Gérard, Rob W H Ruigrok, Martin Blackledge, and Marc Jamin. The n0-binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient α-helices. Protein Sci., 20(3):542–556, 2011.

[359]   Sophie Feuerstein, Zsofia Solyom, Amine Aladag, Adrien Favier, Melanie Schwarten, Silke Hoffmann, Dieter Willbold, and Bernhard Brutscher. Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J. Mol. Biol., 420(4-5):310–323, July 2012.

[360]   Malene Ringkjřbing Jensen, Klaartje Houben, Ewen Lescop, Laurence Blanchard, Rob W H Ruigrok, and Martin Blackledge. Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of sendai virus nucleoprotein. J. Am. Chem. Soc., 130(25):8055–8061, 2008.

[361]   Travis S Bayer, Lauren N Booth, Scott M Knudsen, and Andrew D Ellington. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA, 11(12):1848–1857, December 2005.

[362]   J L Battiste, H Mao, N S Rao, R Tan, D R Muhandiram, L E Kay, A D Frankel, and J R Williamson. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science, 273(5281):1547–1551, September 1996.

[363]   Kelley R Hurst, Cheri A Koetzner, and Paul S Masters. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J. Virol., 87(16):9159–9172, August 2013.

[364]   Kelley R Hurst, Rong Ye, Scott J Goebel, Priya Jayaraman, and Paul S Masters. An interaction between the nucleocapsid protein and a component of the Replicase-Transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. J. Virol., 84(19):10276–10288, October 2010.

[365]   Monique H Verheije, Marne C Hagemeijer, Mustafa Ulasli, Fulvio Reggiori, Peter J M Rottier, Paul S Masters, and Cornelis A M de Haan. The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes. J. Virol., 84(21):11575–11579, November 2010.

[366]   Milan Surjit, Ravinder Kumar, Rabi N Mishra, Malireddy K Reddy, Vincent T K Chow, and Sunil K Lal. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J. Virol., 79(17):11476–11486, September 2005.

[367]   Khalid Amine Timani, Qingjiao Liao, Linbai Ye, Yingchun Zeng, Jing Liu, Yi Zheng, Li Ye, Xiaojun Yang, Kong Lingbao, Jingrong Gao, and Ying Zhu. Nuclear/nucleolar localization properties of c-terminal nucleocapsid protein of SARS coronavirus. Virus Res., 114(1-2):23–34, December 2005.

[368]   Lili Kuo and Paul S Masters. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J. Virol., 76(10):4987–4999, May 2002.

[369]   Kelley R Hurst, Lili Kuo, Cheri A Koetzner, Rong Ye, Bilan Hsue, and Paul S Masters. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol., 79(21):13285–13297, 2005.

[370]   Sandhya Verma, Valerie Bednar, Andrew Blount, and Brenda G Hogue. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein. J. Virol., 80(9):4344–4355, May 2006.

[371]   Volker Brass, Elke Bieck, Roland Montserret, Benno Wölk, Jan Albert Hellings, Hubert E Blum, François Penin, and Darius Moradpour. An amino-terminal amphipathic α-Helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J. Biol. Chem., 277(10):8130–8139, March 2002.

[372]   Anthony R Braun, Michael M Lacy, Vanessa C Ducas, Elizabeth Rhoades, and Jonathan N Sachs. α-Synuclein’s uniquely long amphipathic helix enhances its membrane binding and remodeling capacity. J. Membr. Biol., 250(2):183–193, April 2017.

[373]   Jeffries Wyman and Stanley J Gill. Binding and Linkage: Functional Chemistry of Biological Macromolecules. University Science Books, 1990.

[374]   Jovan Nikolic, Romain Le Bars, Zoé Lama, Nathalie Scrima, Cécile Lagaudričre-Gesbert, Yves Gaudin, and Danielle Blondel. Negri bodies are viral factories with properties of liquid organelles. Nat. Commun., 8(1):58, July 2017.

[375]   Claire M Metrick, Andrea L Koenigsberg, and Ekaterina E Heldwein. Conserved outer tegument component UL11 from herpes simplex virus 1 is an intrinsically disordered, RNA-Binding protein. MBio, 11(3), May 2020.

[376]   Bianca S Heinrich, Zoltan Maliga, David A Stein, Anthony A Hyman, and Sean P J Whelan. Phase transitions drive the formation of vesicular stomatitis virus replication compartments. MBio, 9(5), September 2018.

[377]   Yuqin Zhou, Justin M Su, Charles E Samuel, and Dzwokai Ma. Measles virus forms inclusion bodies with properties of liquid organelles. J. Virol., 93(21), November 2019.

[378]   Anne Monette, Meijuan Niu, Lois Chen, Shringar Rao, Robert James Gorelick, and Andrew John Mouland. Pan-retroviral Nucleocapsid-Mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep., 31(3):107520, April 2020.

[379]   Steffen Klein, Mirko Cortese, Sophie L Winter, Moritz Wachsmuth-Melm, Christopher J Neufeldt, Berati Cerikan, Megan L Stanifer, Steeve Boulant, Ralf Bartenschlager, and Petr Chlanda. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. June 2020.

[380]   Yingying Cong, Franziska Kriegenburg, Cornelis A M de Haan, and Fulvio Reggiori. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Sci. Rep., 7(1):5740, July 2017.

[381]   Chung-Ke Chang, Ming-Hon Hou, Chi-Fon Chang, Chwan-Deng Hsiao, and Tai-Huang Huang. The SARS coronavirus nucleocapsid protein–forms and functions. Antiviral Res., 103:39–50, 2014.

[382]   Alexander Borodavka, Roman Tuma, and Peter G Stockley. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol., 10(4):481–489, April 2013.

[383]   Runtao He, Andrew Leeson, Melissa Ballantine, Anton Andonov, Lindsay Baker, Frederick Dobie, Yan Li, Nathalie Bastien, Heinz Feldmann, Ute Strocher, Steven Theriault, Todd Cutts, Jingxin Cao, Timothy F Booth, Frank A Plummer, Shaun Tyler, and Xuguang Li. Characterization of protein–protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res., 105(2):121–125, October 2004.

[384]   Louis-Philippe Bergeron-Sandoval, Hossein Khadivi Heris, Catherine Chang, Caitlin E Cornell, Sarah L Keller, Paul François, Adam G Hendricks, Allen J Ehrlicher, Rohit V Pappu, and Stephen W Michnick. Endocytosis caused by liquid-liquid phase separation of proteins. December 2018.

[385]   Louis-Philippe Bergeron-Sandoval and Stephen W Michnick. Mechanics, structure and function of biopolymer condensates. J. Mol. Biol., 430(23):4754–4761, November 2018.

[386]   Erik D Holmstrom, Daniel Nettels, and Benjamin Schuler. Conformational plasticity of hepatitis C virus core protein enables RNA-Induced formation of nucleocapsid-like particles. J. Mol. Biol., 430(16):2453–2467, August 2018.

[387]   Lorena Rodríguez, Isabel Cuesta, Ana Asenjo, and Nieves Villanueva. Human respiratory syncytial virus matrix protein is an RNA-binding protein: binding properties, location and identity of the RNA contact residues. J. Gen. Virol., 85(Pt 3):709–719, March 2004.

[388]   Benjamin R Linger, Lyudmyla Kunovska, Richard J Kuhn, and Barbara L Golden. Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization. RNA, 10(1):128–138, January 2004.

[389]   Sonia Zúńiga, Isabel Sola, Jose L Moreno, Patricia Sabella, Juan Plana-Durán, and Luis Enjuanes. Coronavirus nucleocapsid protein is an RNA chaperone. Virology, 357(2):215–227, January 2007.

[390]   Haibin Luo, Qing Chen, Jing Chen, Kaixian Chen, Xu Shen, and Hualiang Jiang. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett., 579(12):2623–2628, May 2005.

[391]   Peiguo Yang, Cécile Mathieu, Regina-Maria Kolaitis, Peipei Zhang, James Messing, Ugur Yurtsever, Zemin Yang, Jinjun Wu, Yuxin Li, Qingfei Pan, Jiyang Yu, Erik W Martin, Tanja Mittag, Hong Joo Kim, and J Paul Taylor. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell, 181(2):325–345.e28, April 2020.

[392]   Mariska G M van Rosmalen, Douwe Kamsma, Andreas S Biebricher, Chenglei Li, Adam Zlotnick, Wouter H Roos, and Gijs J L Wuite. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. Science Advances, 6(16):eaaz1639, April 2020.

[393]   Avinash Patel, Hyun O Lee, Louise Jawerth, Shovamayee Maharana, Marcus Jahnel, Marco Y Hein, Stoyno Stoynov, Julia Mahamid, Shambaditya Saha, Titus M Franzmann, Andrej Pozniakovski, Ina Poser, Nicola Maghelli, Loic A Royer, Martin Weigert, Eugene W Myers, Stephan Grill, David Drechsel, Anthony A Hyman, and Simon Alberti. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 162(5):1066–1077, August 2015.

[394]   Simon Alberti and Dorothee Dormann. Liquid-Liquid phase separation in disease. Annu. Rev. Genet., 53:171–194, December 2019.

[395]   Stephanie C Weber and Clifford P Brangwynne. Getting RNA and protein in phase. Cell, 149(6):1188–1191, June 2012.

[396]   X Zeng, A S Holehouse, T Mittag, A Chilkoti, and R V Pappu. Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. May 2020.

[397]   Gregory L Dignon, Wenwei Zheng, Robert B Best, Young C Kim, and Jeetain Mittal. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl. Acad. Sci. U. S. A., 115(40):9929–9934, October 2018.

[398]   Andreas Vitalis and Rohit V Pappu. ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions. J. Comput. Chem., 30(5):673–699, April 2009.

[399]   Anuradha Mittal, Rahul K Das, Andreas Vitalis, and Rohit V Pappu. The ABSINTH implicit solvation model and forcefield paradigm for use in simulations of intrinsically disordered proteins. In Monika Fuxreiter, editor, Computational Approaches to Protein Dynamics: From Quantum to Coarse-Grained Methods, pages 188–222. CRC Press, 2015.

[400]   Albert H Mao and Rohit V Pappu. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. J. Chem. Phys., 137(6):064104, August 2012.

[401]   Kathryn P Sherry, Rahul K Das, Rohit V Pappu, and Doug Barrick. Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the notch receptor. Proc. Natl. Acad. Sci. U. S. A., 114(44):E9243–E9252, October 2017.

[402]   Alex S Holehouse and Rohit V Pappu. PIMMS (0.24 pre-beta), December 2019.

[403]   Maxwell I. Zimmerman, Justin R. Porter, Michael D. Ward, Sukrit Singh, Neha Vithani, Artur Meller, Upasana L. Mallimadugula, Catherine E. Kuhn, Jonathan H. Borowsky, Rafal P. Wiewiora, Matthew F. D. Hurley, Aoife M Harbison, Carl A Fogarty, Joseph E. Coffland, Elisa Fadda, Vincent A. Voelz, John D. Chodera, and Gregory R. Bowman. Citizen scientists create an exascale computer to combat covid-19. bioRxiv, 2020.

[404]   Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Geng-Fu Xiao, and Zheng-Li Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798):270–273, March 2020.

[405]   Ying Liu, Albert A Gayle, Annelies Wilder-Smith, and Joacim Rocklöv. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine, 27(2):taaa021, March 2020.

[406]   Gabriele Sorci, Bruno Faivre, and Serge Morand. Why does COVID-19 case fatality rate vary among countries? preprint, Infectious Diseases (except HIV/AIDS), April 2020.

[407]   Morteza Abdullatif Khafaie and Fakher Rahim. Cross-country comparison of case fatality rates of covid-19/sars-cov-2. Osong Public Health and Research Perspectives, 11(2):74–80, April 2020.

[408]   Elisabeth Mahase. Coronavirus: covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ, page m641, February 2020.

[409]   Graziano Onder, Giovanni Rezza, and Silvio Brusaferro. Case-fatality rate and characteristics of patients dying in relation to covid-19 in italy. JAMA, March 2020.

[410]   Leonardo Ferreira, Ricardo dos Santos, Glaucius Oliva, and Adriano Andricopulo. Molecular docking and structure-based drug design strategies. Molecules, 20(7):13384–13421, July 2015.

[411]   Kai J Kohlhoff, Diwakar Shukla, Morgan Lawrenz, Gregory R Bowman, David E Konerding, Dan Belov, Russ B Altman, and Vijay S Pande. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature chemistry, 6(1):15–21, January 2014.

[412]   Diwakar Shukla, Yilin Meng, Benoît Roux, and Vijay S Pande. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nature communications, 5(1):3397, March 2014.

[413]   Kathryn M. Hart, Katelyn E. Moeder, Chris M. W. Ho, Maxwell I. Zimmerman, Thomas E. Frederick, and Gregory R. Bowman. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators. PLOS ONE, 12(6):e0178678, June 2017.

[414]   Wenjie Wang, Woo-Jin Shin, Bojie Zhang, Younho Choi, Ji-Seung Yoo, Maxwell I. Zimmerman, Thomas E. Frederick, Gregory R. Bowman, Michael L. Gross, Daisy W. Leung, Jae U. Jung, and Gaya K. Amarasinghe. The cap-snatching sftsv endonuclease domain is an antiviral target. Cell Reports, 30(1):153–163.e5, January 2020.

[415]   Robert N. Kirchdoerfer, Nianshuang Wang, Jesper Pallesen, Daniel Wrapp, Hannah L. Turner, Christopher A. Cottrell, Kizzmekia S. Corbett, Barney S. Graham, Jason S. McLellan, and Andrew B. Ward. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 8(1):15701, December 2018.

[416]   Alexandra C. Walls, Young-Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, and David Veesler. Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 181(2):281–292.e6, April 2020.

[417]   Daniel Wrapp, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching-Lin Hsieh, Olubukola Abiona, Barney S. Graham, and Jason S. McLellan. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483):1260–1263, March 2020.

[418]   Haibo Zhang, Josef M. Penninger, Yimin Li, Nanshan Zhong, and Arthur S. Slutsky. Angiotensin-converting enzyme 2 (Ace2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4):586–590, April 2020.

[419]   Markus Hoffmann, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, Georg Herrler, Nai-Huei Wu, Andreas Nitsche, Marcel A. Müller, Christian Drosten, and Stefan Pöhlmann. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2):271–280.e8, April 2020.

[420]   Yasunori Watanabe, Zachary T. Berndsen, Jayna Raghwani, Gemma E. Seabright, Joel D. Allen, Oliver G. Pybus, Jason S. McLellan, Ian A. Wilson, Thomas A. Bowden, Andrew B. Ward, and Max Crispin. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nature Communications, 11(1):2688, December 2020.

[421]   M.I. Zimmerman and G.R. Bowman. How to run fast simulations. In Methods in Enzymology, volume 578, pages 213–225. Elsevier, 2016.

[422]   Yuan Yuan, Duanfang Cao, Yanfang Zhang, Jun Ma, Jianxun Qi, Qihui Wang, Guangwen Lu, Ying Wu, Jinghua Yan, Yi Shi, Xinzheng Zhang, and George F. Gao. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nature Communications, 8(1):15092, April 2017.

[423]   Jiandong Huo, Yuguang Zhao, Jingshan Ren, Daming Zhou, Helen M.E. Duyvesteyn, Helen M. Ginn, Loic Carrique, Tomas Malinauskas, Reinis R. Ruza, Pranav N.M. Shah, Tiong Kit Tan, Pramila Rijal, Naomi Coombes, Kevin R. Bewley, Julia A. Tree, Julika Radecke, Neil G. Paterson, Piyada Supasa, Juthathip Mongkolsapaya, Gavin R. Screaton, Miles Carroll, Alain Townsend, Elizabeth E. Fry, Raymond J. Owens, and David I. Stuart. Neutralization of sars-cov-2 by destruction of the prefusion spike. Cell Host & Microbe, page S1931312820303516, June 2020.

[424]   Ns Zhong, Bj Zheng, Ym Li, Llm Poon, Zh Xie, Kh Chan, Ph Li, Sy Tan, Q Chang, Jp Xie, Xq Liu, J Xu, Dx Li, Ky Yuen, Jsm Peiris, and Y Guan. Epidemiology and cause of severe acute respiratory syndrome (Sars) in Guangdong, People’s Republic of China, in February, 2003. The Lancet, 362(9393):1353–1358, October 2003.

[425]   Lia van der Hoek, Krzysztof Pyrc, Maarten F Jebbink, Wilma Vermeulen-Oost, Ron J M Berkhout, Katja C Wolthers, Pauline M E Wertheim-van Dillen, Jos Kaandorp, Joke Spaargaren, and Ben Berkhout. Identification of a new human coronavirus. Nature Medicine, 10(4):368–373, April 2004.

[426]   K. Wu, W. Li, G. Peng, and F. Li. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proceedings of the National Academy of Sciences, 106(47):19970–19974, November 2009.

[427]   Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara, Qibin Geng, Ashley Auerbach, and Fang Li. Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807):221–224, May 2020.

[428]   Barney S. Graham, Morgan S.A. Gilman, and Jason S. McLellan. Structure-based vaccine antigen design. Annual Review of Medicine, 70(1):91–104, January 2019.

[429]   Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, and Rolf Hilgenfeld. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, page eabb3405, March 2020.

[430]   Vito Graziano, William J. McGrath, Lin Yang, and Walter F. Mangel. Sars cov main proteinase: the monomerdimer equilibrium dissociation constant. Biochemistry, 45(49):14632–14641, December 2006.

[431]   Bhupesh Goyal and Deepti Goyal. Targeting the dimerization of the main protease of coronaviruses: a potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, 22(6):297–305, June 2020.

[432]   Dhurvas Chandrasekaran Dinesh, Dominika Chalupska, Jan Silhan, Vaclav Veverka, and Evzen Boura. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. preprint, Biochemistry, April 2020.

[433]   Jing Huang and Alexander D. MacKerell. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25):2135–2145, September 2013.

[434]   Manfred Hendlich, Friedrich Rippmann, and Gerhard Barnickel. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. Journal of Molecular Graphics and Modelling, 15(6):359–363, December 1997.

[435]   The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1):D506–D515, January 2019.

[436]   R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5):1792–1797, March 2004.

[437]   Cameron A. Brown, Liya Hu, Zhizeng Sun, Meha P. Patel, Sukrit Singh, Justin R. Porter, Banumathi Sankaran, B. V. Venkataram Prasad, Gregory R. Bowman, and Timothy Palzkill. Antagonism between substitutions in β-lactamase explains a path not taken in the evolution of bacterial drug resistance. Journal of Biological Chemistry, 295(21):7376–7390, May 2020.

[438]   Jeremy R. Knowles. Enzyme catalysis: not different, just better. Nature, 350(6314):121–124, March 1991.

[439]   Michael S. Breen, Carsten Kemena, Peter K. Vlasov, Cedric Notredame, and Fyodor A. Kondrashov. Epistasis as the primary factor in molecular evolution. Nature, 490(7421):535–538, October 2012.

[440]   J. Arjan G.M. de Visser and Joachim Krug. Empirical fitness landscapes and the predictability of evolution. Nature Reviews Genetics, 15(7):480–490, July 2014.

[441]   James A. Wells. Additivity of mutational effects in proteins. Biochemistry, 29(37):8509–8517, September 1990.

[442]   D. M. Weinreich. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science, 312(5770):111–114, April 2006.

[443]   Eynat Dellus-Gur, Agnes Toth-Petroczy, Mikael Elias, and Dan S. Tawfik. What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs. Journal of Molecular Biology, 425(14):2609–2621, July 2013.

[444]   Nicolas Doucet, Eric D. Watt, and J. Patrick Loria. The flexibility of a distant loop modulates active site motion and product release in ribonuclease a. Biochemistry, 48(30):7160–7168, August 2009.

[445]   S. K. Whittier, A. C. Hengge, and J. P. Loria. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science, 341(6148):899–903, August 2013.

[446]   Leo C. James and Dan S. Tawfik. Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends in Biochemical Sciences, 28(7):361–368, July 2003.

[447]   N. Tokuriki and D. S. Tawfik. Protein dynamism and evolvability. Science, 324(5924):203–207, April 2009.

[448]   Dušan Petrović, Valeria A. Risso, Shina Caroline Lynn Kamerlin, and Jose M. Sanchez-Ruiz. Conformational dynamics and enzyme evolution. Journal of The Royal Society Interface, 15(144):20180330, July 2018.

[449]   David M. Livermore and Neil Woodford. The β-lactamase threat in enterobacteriaceae, pseudomonas and acinetobacter. Trends in Microbiology, 14(9):413–420, September 2006.

[450]   Jed F. Fisher, Samy O. Meroueh, and Shahriar Mobashery. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity †. Chemical Reviews, 105(2):395–424, February 2005.

[451]   R P Ambler, A F W Coulson, J M Frčre, J M Ghuysen, B Joris, M Forsman, R C Levesque, G Tiraby, and S G Waley. A standard numbering scheme for the class A β-lactamases. Biochemical Journal, 276(1):269–270, May 1991.

[452]   Karen Bush and Jed F. Fisher. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65(1):455–478, October 2011.

[453]   Timothy Palzkill. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of tem, ctx-m, and kpc β-lactamases. Frontiers in Molecular Biosciences, 5:16, February 2018.

[454]   Jed F. Fisher and Shahriar Mobashery. Three decades of the class a β-lactamase acyl-enzyme, September 2009.

[455]   Kinetics of β-lactamases and penicillin-binding proteins. In Bonomo and Tolmasky, editors, Enzyme-Mediated Resistance to Antibiotics, pages 195–213. American Society of Microbiology, January 2007.

[456]   R. Bonnet. Growing group of extended-spectrum β-lactamases: the ctx-m enzymes. Antimicrobial Agents and Chemotherapy, 48(1):1–14, January 2004.

[457]   Marco Maria D’Andrea, Fabio Arena, Lucia Pallecchi, and Gian Maria Rossolini. CTX-M-type β-lactamases: A successful story of antibiotic resistance. International Journal of Medical Microbiology, 303(6-7):305–317, August 2013.

[458]   Yu Chen, Julien Delmas, Jacques Sirot, Brian Shoichet, and Richard Bonnet. Atomic resolution structures of ctx-m β-lactamases: extended spectrum activities from increased mobility and decreased stability. Journal of Molecular Biology, 348(2):349–362, April 2005.

[459]   Carolyn J. Adamski, Ana Maria Cardenas, Nicholas G. Brown, Lori B. Horton, Banumathi Sankaran, B. V. Venkataram Prasad, Hiram F. Gilbert, and Timothy Palzkill. Molecular basis for the catalytic specificity of the ctx-m extended-spectrum β-lactamases. Biochemistry, 54(2):447–457, January 2015.

[460]   Meha P. Patel, Bartlomiej G. Fryszczyn, and Timothy Palzkill. Characterization of the global stabilizing substitution a77v and its role in the evolution of ctx-m β-lactamases. Antimicrobial Agents and Chemotherapy, 59(11):6741–6748, November 2015.

[461]   Meha P. Patel, Liya Hu, Vlatko Stojanoski, Banumathi Sankaran, B. V. Venkataram Prasad, and Timothy Palzkill. The drug-resistant variant p167s expands the substrate profile of ctx-m β-lactamases for oxyimino-cephalosporin antibiotics by enlarging the active site upon acylation. Biochemistry, 56(27):3443–3453, July 2017.

[462]   R. Bonnet. Effect of d240g substitution in a novel esbl ctx-m-27. Journal of Antimicrobial Chemotherapy, 52(1):29–35, June 2003.

[463]   Soichiro Kimura, Masaji Ishiguro, Yoshikazu Ishii, Jimena Alba, and Keizo Yamaguchi. Role of a mutation at position 167 of ctx-m-19 in ceftazidime hydrolysis. Antimicrobial Agents and Chemotherapy, 48(5):1454–1460, May 2004.

[464]   Rafael Cantón, José María González-Alba, and Juan Carlos Galán. Ctx-m enzymes: origin and diffusion. Frontiers in Microbiology, 3, 2012.

[465]   Natalie C. J. Strynadka, Hiroyuki Adachi, Susan E. Jensen, Kathy Johns, Anita Sielecki, Christian Betzel, Kazuo Sutoh, and Michael N. G. James. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature, 359(6397):700–705, October 1992.

[466]   Angela Novais, Rafael Canton, Teresa M. Coque, Andres Moya, Fernando Baquero, and Juan Carlos Galan. Mutational events in cefotaximase extended-spectrum β-lactamases of the ctx-m-1 cluster involved in ceftazidime resistance. Antimicrobial Agents and Chemotherapy, 52(7):2377–2382, July 2008.

[467]   Yoshikazu Ishii, Moreno Galleni, Ling Ma, Jean-Marie Frčre, and Keizo Yamaguchi. Biochemical characterisation of the CTX-M-14 β-lactamase. International Journal of Antimicrobial Agents, 29(2):159–164, February 2007.

[468]   W. Huang and T. Palzkill. A natural polymorphism in -lactamase is a global suppressor. Proceedings of the National Academy of Sciences, 94(16):8801–8806, August 1997.

[469]   Nicholas G. Brown, Jeanine M. Pennington, Wanzhi Huang, Tulin Ayvaz, and Timothy Palzkill. Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum tem β-lactamases. Journal of Molecular Biology, 404(5):832–846, December 2010.

[470]   Sebastian Mayer, Stefan Rüdiger, Hwee Ching Ang, Andreas C. Joerger, and Alan R. Fersht. Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro. Journal of Molecular Biology, 372(1):268–276, September 2007.

[471]   Zheng Yuan, Timothy L. Bailey, and Rohan D. Teasdale. Prediction of protein B-factor profiles. Proteins: Structure, Function, and Bioinformatics, 58(4):905–912, January 2005.

[472]   Meha P. Patel, Liya Hu, Cameron A. Brown, Zhizeng Sun, Carolyn J. Adamski, Vlatko Stojanoski, Banumathi Sankaran, B. V. Venkataram Prasad, and Timothy Palzkill. Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance. Journal of Biological Chemistry, 293(46):17971–17984, November 2018.

[473]   Yu Chen, Richard Bonnet, and Brian K. Shoichet. The acylation mechanism of ctx-m β-lactamase at 0. 88 Å resolution. Journal of the American Chemical Society, 129(17):5378–5380, May 2007.

[474]   Monica Cartelle, Maria del Mar Tomas, Francisca Molina, Rita Moure, Rosa Villanueva, and German Bou. High-level resistance to ceftazidime conferred by a novel enzyme, ctx-m-32, derived from ctx-m-1 through a single asp240-gly substitution. Antimicrobial Agents and Chemotherapy, 48(6):2308–2313, June 2004.

[475]   Joseph Petrosino, Carlos Cantu, and Timothy Palzkill. β-Lactamases: protein evolution in real time. Trends in Microbiology, 6(8):323–327, August 1998.

[476]   Merijn L.M. Salverda, J. Arjan G.M. De Visser, and Miriam Barlow. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiology Reviews, 34(6):1015–1036, November 2010.

[477]   Eynat Dellus-Gur, Mikael Elias, Emilia Caselli, Fabio Prati, Merijn L.M. Salverda, J. Arjan G.M. de Visser, James S. Fraser, and Dan S. Tawfik. Negative epistasis and evolvability in tem-1 β-lactamase—the thin line between an enzyme’s conformational freedom and disorder. Journal of Molecular Biology, 427(14):2396–2409, July 2015.

[478]   P. Giakkoupi. Detrimental effect of the combination of R164S with G238S in TEM-1 beta-lactamase on the extended-spectrum activity conferred by each single mutation. Journal of Antimicrobial Chemotherapy, 45(1):101–104, January 2000.

[479]   Vlatko Stojanoski, Dar-Chone Chow, Liya Hu, Banumathi Sankaran, Hiram F. Gilbert, B. V. Venkataram Prasad, and Timothy Palzkill. A triple mutant in the -loop of tem-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. Journal of Biological Chemistry, 290(16):10382–10394, April 2015.

[480]   Christopher Fröhlich, Vidar Sřrum, Ane Molden Thomassen, PÅl Jarle Johnsen, Hanna-Kirsti S. Leiros, and Řrjan Samuelsen. Oxa-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere, 4(2):e00024–19, /msphere/4/2/mSphere024–19.atom, March 2019.

[481]   Melissa D. Barnes, Magdalena A. Taracila, Joseph D. Rutter, Christopher R. Bethel, Ioannis Galdadas, Andrea M. Hujer, Emilia Caselli, Fabio Prati, John P. Dekker, Krisztina M. Papp-Wallace, Shozeb Haider, and Robert A. Bonomo. Deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in pseudomonas aeruginosa. mBio, 9(6):e02085–18, /mbio/9/6/mBio.02085–18.atom, December 2018.

[482]   Joseph Petrosino, Gary Rudgers, Hiram Gilbert, and Timothy Palzkill. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of β-lactamases. Journal of Biological Chemistry, 274(4):2394–2400, January 1999.

[483]   Egon Amann, Jürgen Brosius, and Mark Ptashne. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene, 25(2-3):167–178, November 1983.

[484]   F.William Studier and Barbara A. Moffatt. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1):113–130, May 1986.

[485]   David C. Marciano, Jeanine M. Pennington, Xiaohu Wang, Jian Wang, Yu Chen, Veena L. Thomas, Brian K. Shoichet, and Timothy Palzkill. Genetic and structural characterization of an l201p global suppressor substitution in tem-1 β-lactamase. Journal of Molecular Biology, 384(1):151–164, December 2008.

[486]   Paul D. Adams, Pavel V. Afonine, Gábor Bunkóczi, Vincent B. Chen, Ian W. Davis, Nathaniel Echols, Jeffrey J. Headd, Li-Wei Hung, Gary J. Kapral, Ralf W. Grosse-Kunstleve, Airlie J. McCoy, Nigel W. Moriarty, Robert Oeffner, Randy J. Read, David C. Richardson, Jane S. Richardson, Thomas C. Terwilliger, and Peter H. Zwart. phenix : a comprehensive python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography, 66(2):213–221, February 2010.

[487]   P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan. Features and development of Coot. Acta Crystallographica Section D Biological Crystallography, 66(4):486–501, April 2010.

[488]   H J C Berendsen, D van der Spoel, and R van Drunen. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3):43–56, September 1995.

[489]   Alan W Sousa da Silva and Wim F Vranken. Acpype - antechamber python parser interface. BMC Research Notes, 5(1):367, 2012.

[490]   Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9):1157–1174, July 2004.

[491]   Junmei Wang, Wei Wang, Peter A. Kollman, and David A. Case. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2):247–260, October 2006.

[492]   Michael D Onken, Carol M Makepeace, Kevin M Kaltenbronn, Stanley M Kanai, Tyson D Todd, Shiqi Wang, Thomas J Broekelmann, Prabakar Kumar Rao, John A Cooper, and Kendall J Blumer. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Science signaling, 11(546):eaao6852, September 2018.

[493]   Sukrit Singh and Gregory R Bowman. Quantifying allosteric communication via both concerted structural changes and conformational disorder with CARDS. Journal of Chemical Theory and Computation, 13(4):acs.jctc.6b01181–1517, March 2017.

[494]   Ulrich Essmann, Lalith Perera, Max L Berkowitz, Tom Darden, Hsing Lee, and Lee G Pedersen. A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19):8577–8593, November 1995.

[495]   H J C Berendsen, J P M Postma, W F van Gunsteren, A DiNola, and J R Haak. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684–3690, October 1984.

[496]   Alex S Holehouse and Shahar Sukenik. Controlling structural bias in intrinsically disordered proteins using solution space scanning. J. Chem. Theory Comput., 16(3):1794–1805, March 2020.

[497]   Zsuzsanna Dosztányi, Veronika Csizmok, Peter Tompa, and István Simon. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16):3433–3434, August 2005.

[498]   Alex S Holehouse, Rahul K Das, James N Ahad, Mary O G Richardson, and Rohit V Pappu. CIDER: Resources to analyze Sequence-Ensemble relationships of intrinsically disordered proteins. Biophys. J., 112(1):16–21, January 2017.

[499]   Rahul K Das, Yongqi Huang, Aaron H Phillips, Richard W Kriwacki, and Rohit V Pappu. Cryptic sequence features within the disordered protein p27kip1 regulate cell cycle signaling. Proc. Natl. Acad. Sci. U. S. A., 113(20):5616–5621, May 2016.

[500]   Esther Ortega, Srinivasan Rengachari, Ziad Ibrahim, Naghmeh Hoghoughi, Jonathan Gaucher, Alex S Holehouse, Saadi Khochbin, and Daniel Panne. Transcription factor dimerization activates the p300 acetyltransferase. Nature, 562(7728):538–544, October 2018.

[501]   Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C Smith, Berk Hess, and Erik Lindahl. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2:19–25, 2015.

[502]   Noah S Bieler, Tuomas P J Knowles, Daan Frenkel, and Robert Vácha. Connecting macroscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations. PLoS Comput. Biol., 8(10):e1002692, October 2012.

[503]   Steven Boeynaems, Alex S Holehouse, Venera Weinhardt, Denes Kovacs, Joris Van Lindt, Carolyn Larabell, Ludo Van Den Bosch, Rhiju Das, Peter S Tompa, Rohit V Pappu, and Aaron D Gitler. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties. Proc. Natl. Acad. Sci. U. S. A., 116(16):7889–7898, April 2019.

[504]   Kristen A Fichthorn and W H Weinberg. Theoretical foundations of dynamical monte carlo simulations. J. Chem. Phys., 95(2):1090–1096, July 1991.

[505]   An?ela Šarić, Alexander K Buell, Georg Meisl, Thomas C T Michaels, Christopher M Dobson, Sara Linse, Tuomas P J Knowles, and Daan Frenkel. Physical determinants of the self-replication of protein fibrils. Nat. Phys., 12(9):874–880, July 2016.

[506]   Benjamin Schuler, Everett A Lipman, and William A Eaton. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature, 419:743, October 2002.

[507]   Hoi Sung Chung, John M Louis, and Irina V Gopich. Analysis of fluorescence lifetime and energy transfer efficiency in Single-Molecule photon trajectories of Fast-Folding proteins. J. Phys. Chem. B, 120(4):680–699, February 2016.

[508]   Daniel Nettels, Armin Hoffmann, and Benjamin Schuler. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J. Phys. Chem. B, 112(19):6137–6146, May 2008.

[509]   Irina V Gopich, Daniel Nettels, Benjamin Schuler, and Attila Szabo. Protein dynamics from single-molecule fluorescence intensity correlation functions. J. Chem. Phys., 131(9):095102, September 2009.

[510]   Lothar Schäfer. Excluded Volume Effects in Polymer Solutions: as Explained by the Renormalization Group. Springer Science & Business Media, December 2012.

[511]   Wenwei Zheng, Gül H Zerze, Alessandro Borgia, Jeetain Mittal, Benjamin Schuler, and Robert B Best. Inferring properties of disordered chains from FRET transfer efficiencies. J. Chem. Phys., 148(12):123329, March 2018.

[512]   Sonja Müller-Späth, Andrea Soranno, Verena Hirschfeld, Hagen Hofmann, Stefan Rüegger, Luc Reymond, Daniel Nettels, and Benjamin Schuler. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl. Acad. Sci. U. S. A., 107(33):14609–14614, August 2010.

[513]   Paul G Higgs and Jean-françois Joanny. Theory of polyampholyte solutions. J. Chem. Phys., 94(2):1543–1554, January 1991.

[514]   Wenli Meng, Nicholas Lyle, Bowu Luan, Daniel P Raleigh, and Rohit V Pappu. Experiments and simulations show how long-range contacts can form in expanded unfolded proteins with negligible secondary structure. Proc. Natl. Acad. Sci. U. S. A., 110(6):2123–2128, February 2013.

-422.52342